ترغب بنشر مسار تعليمي؟ اضغط هنا

A new hard X-ray selected sample of extreme high-energy peaked BL Lac objects and their TeV gamma-ray properties

89   0   0.0 ( 0 )
 نشر من قبل Luca Foffano
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Extreme high-energy peaked BL Lac objects (EHBLs) are an emerging class of blazars with exceptional spectral properties. The non-thermal emission of the relativistic jet peaks in the spectral energy distribution (SED) plot with the synchrotron emission in X-rays and with the gamma-ray emission in the TeV range or above. These high photon energies may represent a challenge for the standard modeling of these sources. They are important for the implications on the indirect measurements of the extragalactic background light, the intergalactic magnetic field estimate, and the possible origin of extragalactic high-energy neutrinos. In this paper, we perform a comparative study of the multi-wavelength spectra of 32 EHBL objects detected by the Swift-BAT telescope in the hard X-ray band and by the Fermi-LAT telescope in the high-energy gamma-ray band. The source sample presents uniform spectral properties in the broad-band SEDs, except for the TeV gamma-ray band where an interesting bimodality seems to emerge. This suggests that the EHBL class is not homogeneous, and a possible sub-classification of the EHBLs may be unveiled. Furthermore, in order to increase the number of EHBLs and settle their statistics, we discuss the potential detectability of the 14 currently TeV gamma-ray undetected sources in our sample by the Cherenkov telescopes.



قيم البحث

اقرأ أيضاً

Extreme high-energy peaked BL Lac objects (EHBLs) are an emerging class of blazars with exceptional spectral properties. In blazars, the spectral energy distribution (SED) is dominated by the non-thermal emission of the relativistic jet, and consists of two main broad humps. For the EHBLs, these two components peak in the X-ray and GeV-TeV bands, respectively. Although the number of TeV detected extreme blazars is very limited, recent observations by Imaging Atmospheric Cherenkov Telescopes (IACTs) have revealed that in some of them the energy of the second peak exceeds several TeV (e.g. 1ES 0229+200). Their exceptional hard TeV spectra represent a challenge for the standard leptonic modeling, and a possible hadronic contribution may make these objects high-energy neutrinos producers. Moreover, they are important for the implications on the indirect measurements of the extragalactic background light and of the intergalactic magnetic field. In this contribution, we perform a comparative study of the multi-wavelength spectral energy distributions of a sample of hard X-ray selected EHBL objects. The analysis suggests that the EHBL class is not homogeneous, and a possible sub-classification may be unveiled with TeV gamma-ray observations of the candidates. With the purpose of increasing their number and settle their statistics, we discuss the potential detectability of the currently undetected TeV-emitting EHBLs in our sample by current and next generation of IACTs.
151 - W. Zhong 2018
In this paper, we compile the very-high-energy and high-energy spectral indices of 43 BL Lac objects from the literature. Based on a simple math model, $DeltaGamma_{obs}=alpha {rm{z}}+beta $, we present evidence for the origin of an observed spectral break that is denoted by the difference between the observed very-high-energy and high-energy spectral indices, $DeltaGamma_{obs}$. We find by linear regression analysis that $alpha e 0$ and $beta e 0$. These results suggest that the extragalactic background light attenuation and the intrinsic curvature dominate on the GeV-TeV $gamma$-ray energy spectral break of BL Lac objects. We argue that the extragalactic background light attenuation is an exclusive explanation for the redshift evolution of the observed spectral break.
We present a search for high-energy $gamma$-ray emission from 566 Active Galactic Nuclei at redshift $z > 0.2$, from the 2WHSP catalog of high-synchrotron peaked BL Lac objects with eight years of Fermi-LAT data. We focus on a redshift range where el ectromagnetic cascade emission induced by ultra-high-energy cosmic rays can be distinguished from leptonic emission based on the spectral properties of the sources. Our analysis leads to the detection of 160 sources above $approx$ $5sigma$ (TS $geq 25$) in the 1 - 300 GeV energy range. By discriminating significant sources based on their $gamma$-ray fluxes, variability properties, and photon index in the Fermi-LAT energy range, and modeling the expected hadronic signal in the TeV regime, we select a list of promising sources as potential candidate ultra-high-energy cosmic-ray emitters for follow-up observations by Imaging Atmospheric Cherenkov Telescopes.
We report on spectroscopic observations covering most of the 475 BL Lacs in the 2nd Fermi LAT catalog of AGN. Including archival measurements (correcting several erroneous literature values) we now have spectroscopic redshifts for 44% of the BL Lacs. We establish firm lower redshift limits via intervening absorption systems and statistical lower limits via searches for host galaxies for an additional 51% of the sample leaving only 5% of the BL Lacs unconstrained. The new redshifts raise the median spectroscopic z from 0.23 to 0.33 and include redshifts as large as z=2.471. Spectroscopic redshift minima from intervening absorbers have ~ z= 0.70, showing a substantial fraction at large z and arguing against strong negative evolution. We find that detected BL Lac hosts are bright ellipticals with black hole masses M_bullet ~ 10^{8.5-9}, substantially larger than the mean of optical AGN and LAT Flat Spectrum Radio Quasar samples. A slow increase in M_bullet with z may be due to selection bias. We find that the power-law dominance of the optical spectrum extends to extreme values, but this does not strongly correlate with the gamma-ray properties, suggesting that strong beaming is the primary cause of the range in continuum dominance.
BL Lac objects are known to have very energetic jets pointing towards the observer under small viewing angles. Many of these show high luminosity over the whole energy range up to TeV, mostly classified as high-energy peaked BL Lac objects. Recently, TeV gamma-ray emission was detected from a low-energy peaked BL Lac object. Interestingly, this source has also a clear detection of an X-ray jet. We present a detailed study of this X-ray jet and its connection to the radio jet as well as a study of the underlying physical processes in the energetic jet, producing emission from the radio to the TeV range.
التعليقات (0)
no comments...
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا