ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure-induced superconductivity in layered pnictogen diselenide NdO$_{0.8}$F$_{0.2}$Sb$_{1-x}$Bi$_x$Se$_2$ (x = 0.3 and 0.7)

86   0   0.0 ( 0 )
 نشر من قبل Yosuke Goto
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Polycrystalline samples of layered pnictogen diselenide NdO0.8F0.2Sb1-xBixSe2 (x = 0 to 0.8) were successfully synthesized by solid-state reactions. Electrical resistivity in the synthesized samples was systematically decreased with an increase in Bi content x. Crystal structure analysis using synchrotron X-ray diffraction suggests that insulator to metal transition upon Bi doping correlates with anomalous change in c-axis length and/or corrugation in conducting layer. The emergence of superconductivity under high pressure is demonstrated using diamond anvil cell (DAC) with boron-doped diamond electrodes, for x = 0.3 and 0.7 as the representative samples. For Sb-rich one (x = 0.3), we observed a superconducting transition with Tconset = 5.3 K at 50 GPa, which is the first-ever report of the superconductivity in layered SbCh2-based (Ch: chalcogen) compounds. The Tconset of x = 0.3 increased with increasing pressure and reached 7.9 K at 70.8 GPa, followed by the gradual decrease in Tc up to 90 GPa. For Bi-rich one (x = 0.7), a superconducting transition with Tconset = 5.9 K was observed at 43.5 GPa, which is the almost comparable to that of x = 0.3; besides, upper critical field (Hc2) is evaluated to be ~10 T for x = 0.7, which is higher than that of x = 0.3 (Hc2 = 6.7 T at 50 GPa).



قيم البحث

اقرأ أيضاً

Although SbSe2-based layered compounds have been predicted to be high-performance thermoelectric materials and topological materials, most of these compounds obtained experimentally have been insulators so far. Here, we present the effect of Bi subst itution on the thermoelectric properties of SbSe2-based layered compounds NdO0.8F0.2Sb1-xBixSe2 (x = 0-0.4). The room temperature electrical resistivity is decreased to 8.0 * 10^-5 ohmm for x = 0.4. The electrical power factor is calculated to be 1.4 * 10^-4 W/mK^2 at 660 K, which is in reasonable agreement with combined Jonker and Ioffe analysis. The room-temperature lattice thermal conductivity of less than 1 W/mK is almost independent of x, in contrast to the point-defect scattering model for conventional alloys. The present work provides an avenue for exploring SbSe2-based insulating and BiSe2-based conducting systems.
The newly discovered BiS$_2$-based LaO$_{1-x}$F$_{x}$BiS$_2$ ($x$=0.5) becomes superconductive at $T_c$=2.5 K. Electrical resistivity and magnetization measurements are performed under pressure to determine the pressure dependence of the superconduct ing transition temperature $T_c$. We observe that $T_c$ abruptly increases from 2.5 K to 10.7 K at a pressure of 0.7 GPa. According to high-pressure X-ray diffraction measurements, a structural phase transition from a tetragonal phase ($P$4/$nmm$) to a monoclinic phase ($P$2$_1/m$) also occurs at around $sim$ 1 GPa. We consider that a pressure-induced enhancement of superconductivity is caused by the structural phase transition.
137 - L. Jiao , Z. F. Weng , J. Z. Liu 2014
We measure the magnetic penetration depth $Deltalambda(T)$ for NdO$_{1-x}$F$_{x}$BiS$_{2}$ ($x$ = 0.3 and 0.5) using the tunnel diode oscillator technique. The $Deltalambda(T)$ shows an upturn in the low-temperature limit which is attributed to the p aramagnetism of Nd ions. After subtracting the paramagnetic contributions, the penetration depth $Deltalambda(T)$ follows exponential-type temperature dependence at $Tll T_c$. Both $Deltalambda(T)$ and the corresponding superfluid density $rho_s(T)$ can be described by the BCS model with an energy gap of $Delta(0)$ $approx$ 2.0 $k_BT_c$ for both $x$ = 0.3 and 0.5, suggesting strong-coupling BCS superconductivity in the presence of localized moments for NdO$_{1-x}$F$_{x}$BiS$_{2}$.
We have investigated the pressure effect on the newly discovered samarium doped La1-xSmxO0.5F0.5BiS2 superconductors. More than threefold increase in Tc (10.3 K) is observed with external pressure (at ~1.74 GPa at a rate of 4.08 K/GPa)) for x = 0.2 c omposition. There is a concomitant large improvement in the quality of the superconducting transition. Beyond this pressure Tc decreases monotonously at the rate of -2.09 K/GPa. In the x = 0.8 sample, we do not observe any enhancement in Tc with application of pressure (up to 1.76 GPa). The semiconducting behavior observed in the normal state resistivity of both of the samples is significantly subdued with the application of pressure which, if interpreted invoking thermal activation process, implies that the activation energy gap of the carriers is significantly reduced with pressure. We believe these observations should generate further interest in the La1-xSmxO0.5F0.5BiS2 superconductors.
Unconventional superconductivity is characterized by the spontaneous symmetry breaking of the macroscopic superconducting wavefunction in addition to the gauge symmetry breaking, such as rotational-symmetry breaking with respect to the underlying cry stal-lattice symmetry. Particularly, superconductivity with spontaneous rotational-symmetry breaking in the wavefunction amplitude and thus in bulk properties, not yet reported previously, is intriguing and can be termed nematic superconductivity in analogy to nematic liquid-crystal phases. Here, based on specific-heat measurements of the single-crystalline Cu$_x$Bi$_2$Se$_3$ under accurate magnetic-field-direction control, we report thermodynamic evidence for nematic superconductivity, namely, clear two-fold-symmetric behavior in a trigonal lattice. The results indicate realization of an odd-parity nematic state, feasible only by macroscopic quantum condensates and distinct from nematic states in liquid crystals. The results also confirm topologically non-trivial superconductivity in Cu$_x$Bi$_2$Se$_3$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا