ﻻ يوجد ملخص باللغة العربية
This White Paper explores advances in the study of Active Galaxies which will be enabled by new observing capabilities at MeV energies (hard X-rays to gamma-rays; 0.1-1000 MeV), with a focus on multi-wavelength synergies. This spectral window, covering four decades in energy, is one of the last frontiers for which we lack sensitive observations. Only the COMPTEL mission, which flew in the 1990s, has significantly probed this energy range, detecting a handful of AGN. In comparison, the currently active Fermi Gamma-ray Space Telescope, observing at the adjacent range of 0.1-100 GeV, is 100-1000 times more sensitive. This White Paper describes advances to be made in the study of sources as diverse as tidal disruption events, jetted AGN of all classes (blazars, compact steep-spectrum sources, radio galaxies and relics) as well as radio-quiet AGN, most of which would be detected for the first time in this energy regime. New and existing technologies will enable MeV observations at least 50-100 times more sensitive than COMPTEL, revealing new source populations and addressing several open questions, including the nature of the corona emission in non-jetted AGN, the precise level of the optical extragalactic background light, the accretion mode in low-luminosity AGN, and the structure and particle content of extragalactic jets.
Enabled by the Fermi Large Area Telescope, we now know young and recycled pulsars fill the gamma-ray sky, and we are beginning to understand their emission mechanism and their distribution throughout the Galaxy. However, key questions remain: Is ther
X-ray polarimetry promises to give qualitatively new information about high-energy sources. Examples of interesting source classes are binary black hole systems, rotation and accretion powered neutron stars, Microquasars, Active Galactic Nuclei and G
Hard X-ray surveys are an important tool for the study of active galactic nuclei (AGN): they provide almost an unbiased view of absorption in the extragalactic population, allow the study of spectral features such as reflection and high energy cut-of
We present preliminary results on the variability properties of AGN above 20 keV in order to show the potential of the INTEGRAL IBIS/ISGRI and Swift/BAT instruments for hard X-ray timing analysis of AGN. The 15-50 keV light curves of 36 AGN observed
We present here our results on the hour like time scale X-ray flux variations in a sample of active galactic nuclei using data from the Nuclear Spectroscopic Telescope Array (NuSTAR). We find that in the 3-79 keV band, BL Lacs are more variable than