ترغب بنشر مسار تعليمي؟ اضغط هنا

Bilinear Representation for Language-based Image Editing Using Conditional Generative Adversarial Networks

81   0   0.0 ( 0 )
 نشر من قبل YueFeng Chen
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The task of Language-Based Image Editing (LBIE) aims at generating a target image by editing the source image based on the given language description. The main challenge of LBIE is to disentangle the semantics in image and text and then combine them to generate realistic images. Therefore, the editing performance is heavily dependent on the learned representation. In this work, conditional generative adversarial network (cGAN) is utilized for LBIE. We find that existing conditioning methods in cGAN lack of representation power as they cannot learn the second-order correlation between two conditioning vectors. To solve this problem, we propose an improved conditional layer named Bilinear Residual Layer (BRL) to learning more powerful representations for LBIE task. Qualitative and quantitative comparisons demonstrate that our method can generate images with higher quality when compared to previous LBIE techniques.



قيم البحث

اقرأ أيضاً

Image generation has raised tremendous attention in both academic and industrial areas, especially for the conditional and target-oriented image generation, such as criminal portrait and fashion design. Although the current studies have achieved prel iminary results along this direction, they always focus on class labels as the condition where spatial contents are randomly generated from latent vectors. Edge details are usually blurred since spatial information is difficult to preserve. In light of this, we propose a novel Spatially Constrained Generative Adversarial Network (SCGAN), which decouples the spatial constraints from the latent vector and makes these constraints feasible as additional controllable signals. To enhance the spatial controllability, a generator network is specially designed to take a semantic segmentation, a latent vector and an attribute-level label as inputs step by step. Besides, a segmentor network is constructed to impose spatial constraints on the generator. Experimentally, we provide both visual and quantitative results on CelebA and DeepFashion datasets, and demonstrate that the proposed SCGAN is very effective in controlling the spatial contents as well as generating high-quality images.
When trained on multimodal image datasets, normal Generative Adversarial Networks (GANs) are usually outperformed by class-conditional GANs and ensemble GANs, but conditional GANs is restricted to labeled datasets and ensemble GANs lack efficiency. W e propose a novel GAN variant called virtual conditional GAN (vcGAN) which is not only an ensemble GAN with multiple generative paths while adding almost zero network parameters, but also a conditional GAN that can be trained on unlabeled datasets without explicit clustering steps or objectives other than the adversary loss. Inside the vcGANs generator, a learnable ``analog-to-digital converter (ADC) module maps a slice of the inputted multivariate Gaussian noise to discrete/digital noise (virtual label), according to which a selector selects the corresponding generative path to produce the sample. All the generative paths share the same decoder network while in each path the decoder network is fed with a concatenation of a different pre-computed amplified one-hot vector and the inputted Gaussian noise. We conducted a lot of experiments on several balanced/imbalanced image datasets to demonstrate that vcGAN converges faster and achieves improved Frechet Inception Distance (FID). In addition, we show the training byproduct that the ADC in vcGAN learned the categorical probability of each mode and that each generative path generates samples of specific mode, which enables class-conditional sampling. Codes are available at url{https://github.com/annonnymmouss/vcgan}
Recently, realistic image generation using deep neural networks has become a hot topic in machine learning and computer vision. Images can be generated at the pixel level by learning from a large collection of images. Learning to generate colorful ca rtoon images from black-and-white sketches is not only an interesting research problem, but also a potential application in digital entertainment. In this paper, we investigate the sketch-to-image synthesis problem by using conditional generative adversarial networks (cGAN). We propose the auto-painter model which can automatically generate compatible colors for a sketch. The new model is not only capable of painting hand-draw sketch with proper colors, but also allowing users to indicate preferred colors. Experimental results on two sketch datasets show that the auto-painter performs better that existing image-to-image methods.
In this paper, we propose a novel conditional-generative-adversarial-nets-based image captioning framework as an extension of traditional reinforcement-learning (RL)-based encoder-decoder architecture. To deal with the inconsistent evaluation problem among different objective language metrics, we are motivated to design some discriminator networks to automatically and progressively determine whether generated caption is human described or machine generated. Two kinds of discriminator architectures (CNN and RNN-based structures) are introduced since each has its own advantages. The proposed algorithm is generic so that it can enhance any existing RL-based image captioning framework and we show that the conventional RL training method is just a special case of our approach. Empirically, we show consistent improvements over all language evaluation metrics for different state-of-the-art image captioning models. In addition, the well-trained discriminators can also be viewed as objective image captioning evaluators
We consider the hypothesis testing problem of detecting conditional dependence, with a focus on high-dimensional feature spaces. Our contribution is a new test statistic based on samples from a generative adversarial network designed to approximate d irectly a conditional distribution that encodes the null hypothesis, in a manner that maximizes power (the rate of true negatives). We show that such an approach requires only that density approximation be viable in order to ensure that we control type I error (the rate of false positives); in particular, no assumptions need to be made on the form of the distributions or feature dependencies. Using synthetic simulations with high-dimensional data we demonstrate significant gains in power over competing methods. In addition, we illustrate the use of our test to discover causal markers of disease in genetic data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا