ﻻ يوجد ملخص باللغة العربية
Recently, it has been shown that many functions on sets can be represented by sum decompositions. These decompositons easily lend themselves to neural approximations, extending the applicability of neural nets to set-valued inputs---Deep Set learning. This work investigates a core component of Deep Set architecture: aggregation functions. We suggest and examine alternatives to commonly used aggregation functions, including learnable recurrent aggregation functions. Empirically, we show that the Deep Set networks are highly sensitive to the choice of aggregation functions: beyond improved performance, we find that learnable aggregations lower hyper-parameter sensitivity and generalize better to out-of-distribution input size.
An electrocardiogram (ECG) is a time-series signal that is represented by one-dimensional (1-D) data. Higher dimensional representation contains more information that is accessible for feature extraction. Hidden variables such as frequency relation a
Matching two different sets of items, called heterogeneous set-to-set matching problem, has recently received attention as a promising problem. The difficulties are to extract features to match a correct pair of different sets and also preserve two t
One of the distinguishing characteristics of modern deep learning systems is that they typically employ neural network architectures that utilize enormous numbers of parameters, often in the millions and sometimes even in the billions. While this par
Gaussian processes (GPs) are used to make medical and scientific decisions, including in cardiac care and monitoring of carbon dioxide emissions. But the choice of GP kernel is often somewhat arbitrary. In particular, uncountably many kernels typical
Deep learning has been the engine powering many successes of data science. However, the deep neural network (DNN), as the basic model of deep learning, is often excessively over-parameterized, causing many difficulties in training, prediction and int