ﻻ يوجد ملخص باللغة العربية
Here we focus on the measurement induced nonlocality and present a redefinition in terms of the skew information subject to a broken observable. It is shown that the obtained quantity possesses an obvious operational meaning, can tackle the noncontractivity of the measurement induced nonlocality and has analytic expressions for many quantum states. Most importantly, an inverse approximate joint diagonalization algorithm, due to its simplicity, high efficiency, stability, and state independence, is presented to provide almost analytic expressions for any quantum state, which can also shed light on other aspects in physics.
We present a generic method to construct a product basis exhibiting Nonlocality Without Entanglement with $n$ parties each holding a system of dimension at least $n-1$. This basis is generated via a quantum circuit made of control-Discrete Fourier Tr
Incompatibility of observables, or measurements, is one of the key features of quantum mechanics, related, among other concepts, to Heisenbergs uncertainty relations and Bell nonlocality. In this manuscript we show, however, that even though incompat
We have found a quantum cloning machine that optimally duplicates the entanglement of a pair of $d$-dimensional quantum systems. It maximizes the entanglement of formation contained in the two copies of any maximally-entangled input state, while pres
In this article, we propose measurement-induced nonlocality (MIN) quantified by Hellinger distance using von Neumann projective measurement. The proposed MIN is a bonafide measure of nonlocal correlation and is resistant to local ancilla problem. We
We explore the connection between two problems that have arisen independently in the signal processing and related fields: the estimation of the geometric mean of a set of symmetric positive definite (SPD) matrices and their approximate joint diagona