ترغب بنشر مسار تعليمي؟ اضغط هنا

Annealing for Distributed Global Optimization

57   0   0.0 ( 0 )
 نشر من قبل Soummya Kar
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

The paper proves convergence to global optima for a class of distributed algorithms for nonconvex optimization in network-based multi-agent settings. Agents are permitted to communicate over a time-varying undirected graph. Each agent is assumed to possess a local objective function (assumed to be smooth, but possibly nonconvex). The paper considers algorithms for optimizing the sum function. A distributed algorithm of the consensus+innovations type is proposed which relies on first-order information at the agent level. Under appropriate conditions on network connectivity and the cost objective, convergence to the set of global optima is achieved by an annealing-type approach, with decaying Gaussian noise independently added into each agents update step. It is shown that the proposed algorithm converges in probability to the set of global minima of the sum function.



قيم البحث

اقرأ أيضاً

We propose a new distributed optimization algorithm for solving a class of constrained optimization problems in which (a) the objective function is separable (i.e., the sum of local objective functions of agents), (b) the optimization variables of di stributed agents, which are subject to nontrivial local constraints, are coupled by global constraints, and (c) only noisy observations are available to estimate (the gradients of) local objective functions. In many practical scenarios, agents may not be willing to share their optimization variables with others. For this reason, we propose a distributed algorithm that does not require the agents to share their optimization variables with each other; instead, each agent maintains a local estimate of the global constraint functions and share the estimate only with its neighbors. These local estimates of constraint functions are updated using a consensus-type algorithm, while the local optimization variables of each agent are updated using a first-order method based on noisy estimates of gradient. We prove that, when the agents adopt the proposed algorithm, their optimization variables converge with probability 1 to an optimal point of an approximated problem based on the penalty method.
We propose and analyze a new stochastic gradient method, which we call Stochastic Unbiased Curvature-aided Gradient (SUCAG), for finite sum optimization problems. SUCAG constitutes an unbiased total gradient tracking technique that uses Hessian infor mation to accelerate con- vergence. We analyze our method under the general asynchronous model of computation, in which each function is selected infinitely often with possibly unbounded (but sublinear) delay. For strongly convex problems, we establish linear convergence for the SUCAG method. When the initialization point is sufficiently close to the optimal solution, the established convergence rate is only dependent on the condition number of the problem, making it strictly faster than the known rate for the SAGA method. Furthermore, we describe a Markov-driven approach of implementing the SUCAG method in a distributed asynchronous multi-agent setting, via gossiping along a random walk on an undirected communication graph. We show that our analysis applies as long as the graph is connected and, notably, establishes an asymptotic linear convergence rate that is robust to the graph topology. Numerical results demonstrate the merits of our algorithm over existing methods.
We present AUQ-ADMM, an adaptive uncertainty-weighted consensus ADMM method for solving large-scale convex optimization problems in a distributed manner. Our key contribution is a novel adaptive weighting scheme that empirically increases the progres s made by consensus ADMM scheme and is attractive when using a large number of subproblems. The weights are related to the uncertainty associated with the solutions of each subproblem, and are efficiently computed using low-rank approximations. We show AUQ-ADMM provably converges and demonstrate its effectiveness on a series of machine learning applications, including elastic net regression, multinomial logistic regression, and support vector machines. We provide an implementation based on the PyTorch package.
253 - Kui Zhu , Yutao Tang 2021
This paper studies the distributed optimization problem where the objective functions might be nondifferentiable and subject to heterogeneous set constraints. Unlike existing subgradient methods, we focus on the case when the exact subgradients of th e local objective functions can not be accessed by the agents. To solve this problem, we propose a projected primal-dual dynamics using only the objective functions approximate subgradients. We first prove that the formulated optimization problem can only be solved with an approximate error depending upon the accuracy of the available subgradients. Then, we show the exact solvability of this optimization problem if the accumulated approximation error is not too large. After that, we also give a novel componentwise normalized variant to improve the transient behavior of the convergent sequence. The effectiveness of our algorithms is verified by a numerical example.
In this paper, we consider a stochastic distributed nonconvex optimization problem with the cost function being distributed over $n$ agents having access only to zeroth-order (ZO) information of the cost. This problem has various machine learning app lications. As a solution, we propose two distributed ZO algorithms, in which at each iteration each agent samples the local stochastic ZO oracle at two points with an adaptive smoothing parameter. We show that the proposed algorithms achieve the linear speedup convergence rate $mathcal{O}(sqrt{p/(nT)})$ for smooth cost functions and $mathcal{O}(p/(nT))$ convergence rate when the global cost function additionally satisfies the Polyak--Lojasiewicz (P--L) condition, where $p$ and $T$ are the dimension of the decision variable and the total number of iterations, respectively. To the best of our knowledge, this is the first linear speedup result for distributed ZO algorithms, which enables systematic processing performance improvements by adding more agents. We also show that the proposed algorithms converge linearly when considering deterministic centralized optimization problems under the P--L condition. We demonstrate through numerical experiments the efficiency of our algorithms on generating adversarial examples from deep neural networks in comparison with baseline and recently proposed centralized and distributed ZO algorithms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا