ﻻ يوجد ملخص باللغة العربية
Currently, one of the best performing and most popular earthquake forecasting models rely on the working hypothesis that: locations of past background earthquakes reveal the probable location of future seismicity. As an alternative, we present a class of smoothed seismicity models (SSMs) based on the principles of the Epidemic Type Aftershock Sequence (ETAS) model, which forecast the location, time and magnitude of all future earthquakes using the estimates of the background seismicity rate and the rates of future aftershocks of all generations. Using the Californian earthquake catalog, we formulate six controlled pseudo-prospective experiments with different combination of three target magnitude thresholds: 2.95, 3.95 or 4.95 and two forecasting time horizons: 1 or 5 year. In these experiments, we compare the performance of:(1) ETAS model with spatially homogenous parameters or GETAS (2) ETAS model with spatially variable parameters or SVETAS (3) three declustering based SSMs (4) a simple SSM based on undeclustered data and (5) a model based on strain rate data, in forecasting the location and magnitude of all (undeclustered) target earthquakes during many testing periods. In all conducted experiments, the SVETAS model comes out with consistent superiority compared to all the competing models. Consistently better performance of SVETAS model with respect to declustering based SSMs highlights the importance of forecasting the future aftershocks of all generations for developing better earthquake forecasting models. Among the two ETAS models themselves, accounting for the optimal spatial variation of the parameters leads to strong and statistically significant improvements in forecasting performance.
Forecasting the full distribution of the number of earthquakes is revealed to be inherently superior to forecasting their mean. Forecasting the full distribution of earthquake numbers is also shown to yield robust projections in the presence of surpr
We propose two new methods to calibrate the parameters of the Epidemic-Type Aftershock Sequence (ETAS) model based on expectation maximization (EM) while accounting for temporal variation of catalog completeness. The first method allows for model cal
Natural earthquake fault systems are highly non-homogeneous. The inhomogeneities occur be- cause the earth is made of a variety of materials which hold and dissipate stress differently. In this work, we study scaling in earthquake fault models which
Inspired by spring-block models, we elaborate a minimal physical model of earthquakes which reproduces two main empirical seismological laws, the Gutenberg-Richter law and the Omori aftershock law. Our new point is to demonstrate that the simultaneou
Using the ETAS branching model of triggered seismicity, we apply the formalism of generating probability functions to calculate exactly the average difference between the magnitude of a mainshock and the magnitude of its largest aftershock over all g