ترغب بنشر مسار تعليمي؟ اضغط هنا

Active and Passive Portfolio Management with Latent Factors

79   0   0.0 ( 0 )
 نشر من قبل Ali Al-Aradi
 تاريخ النشر 2019
  مجال البحث مالية الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We address a portfolio selection problem that combines active (outperformance) and passive (tracking) objectives using techniques from convex analysis. We assume a general semimartingale market model where the assets growth rate processes are driven by a latent factor. Using techniques from convex analysis we obtain a closed-form solution for the optimal portfolio and provide a theorem establishing its uniqueness. The motivation for incorporating latent factors is to achieve improved growth rate estimation, an otherwise notoriously difficult task. To this end, we focus on a model where growth rates are driven by an unobservable Markov chain. The solution in this case requires a filtering step to obtain posterior probabilities for the state of the Markov chain from asset price information, which are subsequently used to find the optimal allocation. We show the optimal strategy is the posterior average of the optimal strategies the investor would have held in each state assuming the Markov chain remains in that state. Finally, we implement a number of historical backtests to demonstrate the performance of the optimal portfolio.



قيم البحث

اقرأ أيضاً

Portfolio management problems are often divided into two types: active and passive, where the objective is to outperform and track a preselected benchmark, respectively. Here, we formulate and solve a dynamic asset allocation problem that combines th ese two objectives in a unified framework. We look to maximize the expected growth rate differential between the wealth of the investors portfolio and that of a performance benchmark while penalizing risk-weighted deviations from a given tracking portfolio. Using stochastic control techniques, we provide explicit closed-form expressions for the optimal allocation and we show how the optimal strategy can be related to the growth optimal portfolio. The admissible benchmarks encompass the class of functionally generated portfolios (FGPs), which include the market portfolio, as the only requirement is that they depend only on the prevailing asset values. Finally, some numerical experiments are presented to illustrate the risk-reward profile of the optimal allocation.
The problem of portfolio management represents an important and challenging class of dynamic decision making problems, where rebalancing decisions need to be made over time with the consideration of many factors such as investors preferences, trading environments, and market conditions. In this paper, we present a new portfolio policy network architecture for deep reinforcement learning (DRL)that can exploit more effectively cross-asset dependency information and achieve better performance than state-of-the-art architectures. In particular, we introduce a new property, referred to as textit{asset permutation invariance}, for portfolio policy networks that exploit multi-asset time series data, and design the first portfolio policy network, named WaveCorr, that preserves this invariance property when treating asset correlation information. At the core of our design is an innovative permutation invariant correlation processing layer. An extensive set of experiments are conducted using data from both Canadian (TSX) and American stock markets (S&P 500), and WaveCorr consistently outperforms other architectures with an impressive 3%-25% absolute improvement in terms of average annual return, and up to more than 200% relative improvement in average Sharpe ratio. We also measured an improvement of a factor of up to 5 in the stability of performance under random choices of initial asset ordering and weights. The stability of the network has been found as particularly valuable by our industrial partner.
Optimal asset allocation is a key topic in modern finance theory. To realize the optimal asset allocation on investors risk aversion, various portfolio construction methods have been proposed. Recently, the applications of machine learning are rapidl y growing in the area of finance. In this article, we propose the Students $t$-process latent variable model (TPLVM) to describe non-Gaussian fluctuations of financial timeseries by lower dimensional latent variables. Subsequently, we apply the TPLVM to minimum-variance portfolio as an alternative of existing nonlinear factor models. To test the performance of the proposed portfolio, we construct minimum-variance portfolios of global stock market indices based on the TPLVM or Gaussian process latent variable model. By comparing these portfolios, we confirm the proposed portfolio outperforms that of the existing Gaussian process latent variable model.
We extend Relative Robust Portfolio Optimisation models to allow portfolios to optimise their distance to a set of benchmarks. Portfolio managers are also given the option of computing regret in a way which is more in line with market practices than other approaches suggested in the literature. In addition, they are given the choice of simply adding an extra constraint to their optimisation problem instead of outright changing the objective function, as is commonly suggested in the literature. We illustrate the benefits of this approach by applying it to equity portfolios in a variety of regions.
We study portfolio selection in a model with both temporary and transient price impact introduced by Garleanu and Pedersen (2016). In the large-liquidity limit where both frictions are small, we derive explicit formulas for the asymptotically optimal trading rate and the corresponding minimal leading-order performance loss. We find that the losses are governed by the volatility of the frictionless target strategy, like in models with only temporary price impact. In contrast, the corresponding optimal portfolio not only tracks the frictionless optimizer, but also exploits the displacement of the market price from its unaffected level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا