ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Memory Management for GPU-based Deep Learning Systems

126   0   0.0 ( 0 )
 نشر من قبل Junzhe Zhang Mr
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

GPU (graphics processing unit) has been used for many data-intensive applications. Among them, deep learning systems are one of the most important consumer systems for GPU nowadays. As deep learning applications impose deeper and larger models in order to achieve higher accuracy, memory management becomes an important research topic for deep learning systems, given that GPU has limited memory size. Many approaches have been proposed towards this issue, e.g., model compression and memory swapping. However, they either degrade the model accuracy or require a lot of manual intervention. In this paper, we propose two orthogonal approaches to reduce the memory cost from the system perspective. Our approaches are transparent to the models, and thus do not affect the model accuracy. They are achieved by exploiting the iterative nature of the training algorithm of deep learning to derive the lifetime and read/write order of all variables. With the lifetime semantics, we are able to implement a memory pool with minimal fragments. However, the optimization problem is NP-complete. We propose a heuristic algorithm that reduces up to 13.3% of memory compared with Nvidias default memory pool with equal time complexity. With the read/write semantics, the variables that are not in use can be swapped out from GPU to CPU to reduce the memory footprint. We propose multiple swapping strategies to automatically decide which variable to swap and when to swap out (in), which reduces the memory cost by up to 34.2% without communication overhead.



قيم البحث

اقرأ أيضاً

This paper presents GPU performance optimization and scaling results for inference models of the Sparse Deep Neural Network Challenge 2020. Demands for network quality have increased rapidly, pushing the size and thus the memory requirements of many neural networks beyond the capacity of available accelerators. Sparse deep neural networks (SpDNN) have shown promise for reining in the memory footprint of large neural networks. However, there is room for improvement in implementing SpDNN operations on GPUs. This work presents optimized sparse matrix multiplication kernels fused with the ReLU function. The optimized kernels reuse input feature maps from the shared memory and sparse weights from registers. For multi-GPU parallelism, our SpDNN implementation duplicates weights and statically partition the feature maps across GPUs. Results for the challenge benchmarks show that the proposed kernel design and multi-GPU parallelization achieve up to 180 tera-edges per second inference throughput. These results are up to 4.3x faster for a single GPU and an order of magnitude faster at full scale than those of the champion of the 2019 Sparse Deep Neural Network Graph Challenge for the same generation of NVIDIA V100 GPUs. Using the same implementation, we also show single-GPU throughput on NVIDIA A100 is 2.37$times$ faster than V100.
Cutting-edge embedded system applications, such as self-driving cars and unmanned drone software, are reliant on integrated CPU/GPU platforms for their DNNs-driven workload, such as perception and other highly parallel components. In this work, we se t out to explore the hidden performance implication of GPU memory management methods of integrated CPU/GPU architecture. Through a series of experiments on micro-benchmarks and real-world workloads, we find that the performance under different memory management methods may vary according to application characteristics. Based on this observation, we develop a performance model that can predict system overhead for each memory management method based on application characteristics. Guided by the performance model, we further propose a runtime scheduler. By conducting per-task memory management policy switching and kernel overlapping, the scheduler can significantly relieve the system memory pressure and reduce the multitasking co-run response time. We have implemented and extensively evaluated our system prototype on the NVIDIA Jetson TX2, Drive PX2, and Xavier AGX platforms, using both Rodinia benchmark suite and two real-world case studies of drone software and autonomous driving software.
Modern GPU datacenters are critical for delivering Deep Learning (DL) models and services in both the research community and industry. When operating a datacenter, optimization of resource scheduling and management can bring significant financial ben efits. Achieving this goal requires a deep understanding of the job features and user behaviors. We present a comprehensive study about the characteristics of DL jobs and resource management. First, we perform a large-scale analysis of real-world job traces from SenseTime. We uncover some interesting conclusions from the perspectives of clusters, jobs and users, which can facilitate the cluster system designs. Second, we introduce a general-purpose framework, which manages resources based on historical data. As case studies, we design: a Quasi-Shortest-Service-First scheduling service, which can minimize the cluster-wide average job completion time by up to 6.5x; and a Cluster Energy Saving service, which improves overall cluster utilization by up to 13%.
We consider a multicast scheme recently proposed for a wireless downlink in [1]. It was shown earlier that power control can significantly improve its performance. However for this system, obtaining optimal power control is intractable because of a v ery large state space. Therefore in this paper we use deep reinforcement learning where we use function approximation of the Q-function via a deep neural network. We show that optimal power control can be learnt for reasonably large systems via this approach. The average power constraint is ensured via a Lagrange multiplier, which is also learnt. Finally, we demonstrate that a slight modification of the learning algorithm allows the optimal control to track the time varying system statistics.
In this paper we describe the research and development activities in the Center for Efficient Exascale Discretization within the US Exascale Computing Project, targeting state-of-the-art high-order finite-element algorithms for high-order application s on GPU-accelerated platforms. We discuss the GPU developments in several components of the CEED software stack, including the libCEED, MAGMA, MFEM, libParanumal, and Nek projects. We report performance and capability improvements in several CEED-enabled applications on both NVIDIA and AMD GPU systems.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا