ﻻ يوجد ملخص باللغة العربية
Multi-field inflation with a curved scalar geometry has been found to support background trajectories that violate the slow-roll, slow-turn conditions and thus have the potential to evade the swampland constraints. In order to understand how generic this novel behaviour is and what conditions lead to it, we perform a classification of dynamical attractors of two-field inflation that are of the scaling type. Scaling solutions form a one-parameter generalization of De Sitter solutions with a constant value of the first Hubble flow parameter $epsilon$ and, as we argue and demonstrate, form a natural starting point for the study of non-slow-roll slow-turn behaviour. All scaling solutions can be classified as critical points of a specific dynamical system. We recover known multi-field inflationary attractors as approximate scaling solutions and classify their stability using dynamical system techniques. In particular, we discover that dynamical bifurcations play an integral role in the transition between geodesic and non-geodesic motion and discuss the ability of scaling solutions to describe realistic multi-field models. We revisit the criteria for background stability and show cases where the usual criteria found in the literature do not capture the background evolution of the system.
We explore the dynamics of multi-field models of inflation in which the field-space metric is a hyperbolic manifold of constant curvature. Such models are known as $alpha$-attractors and their single-field regimes have been extensively studied in the
We analyze and compare the multi-field dynamics during inflation and preheating in symmetric and asymmetric models of $alpha$-attractors, characterized by a hyperbolic field-space manifold. We show that the generalized (asymmetric) E- and (symmetric)
In this PhD thesis, we investigate generic features of inflation which are strictly related to fundamental aspects of UV-physics scenarios, such as string theory or supergravity. After a short introduction to standard and inflationary cosmology, we p
We study the consequences of spatial coordinate transformation in multi-field inflation. Among the spontaneously broken de Sitter isometries, only dilatation in the comoving gauge preserves the form of the metric and thus results in quantum-protected
Moduli with flat or run-away classical potentials are generic in theories based on supersymmetry and extra dimensions. They mix between themselves and with matter fields in kinetic terms and in the nonperturbative superpotentials. As the result, inte