ﻻ يوجد ملخص باللغة العربية
We clarify the optimal conditions for the protocol of Raman sideband cooling (RSC) of a single atom confined with a tightly focused far-off-resonant optical dipole trap (optical tweezers). The protocol ultimately pursues cooling to a three-dimensional ground state of the confining potential. We show that the RSC protocol has to fulfil a set of critical requirements for the parameters of cooling beams and the excitation geometry to be effective in a most general three-dimensional confguration and for an atom, having initial temperature between the recoil and the Doppler bounds. We perform a numerical simulation of the Raman passage for an example of an $^{85}$Rb atom taking into account the full level structure and all possible transition channels.
We present detailed discussions of cooling and trapping mechanisms for an atom in an optical trap inside an optical cavity, as relevant to recent experiments. The interference pattern of cavity QED and trapping fields in space makes the trapping well
We present a theoretical investigation of coherent dynamics of a spin qubit encoded in hyperfine sublevels of an alkali-metal atom in a far off-resonant optical dipole trap. The qubit is prepared in the clock transition utilizing the Zeeman states wi
We report enhanced three-dimensional degenerated Raman sideband cooling (3D DRSC) of caesium (Cs) atoms in a standard single-cell vapour-loading magneto-optical trap. Our improved scheme involves using a separate repumping laser and optimized lattice
A frequency doubled I/Q modulator based optical single-sideband (OSSB) laser system is demonstrated for atomic physics research, specifically for atom interferometry where the presence of additional sidebands causes parasitic transitions. The perform
A method of sideband Raman cooling to the vibrational ground state of the $m=0$ Zeeman sublevel in a far-detuned two-dimensional optical lattice is proposed. In our scheme, the Raman coupling between vibrational manifolds of the adjacent Zeeman suble