ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutrinos, Cosmic Rays and the MeV Band

102   0   0.0 ( 0 )
 نشر من قبل Roopesh Ojha
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The possible association of the blazar TXS 0506+056 with a high-energy neutrino detected by IceCube holds the tantalizing potential to answer three astrophysical questions: 1. Where do high-energy neutrinos originate? 2. Where are cosmic rays produced and accelerated? 3. What radiation mechanisms produce the high-energy {gamma}-rays in blazars? The MeV gamma-ray band holds the key to these questions, because it is an excellent proxy for photo-hadronic processes in blazar jets, which also produce neutrino counterparts. Variability in MeV gamma-rays sheds light on the physical conditions and mechanisms that take place in the particle acceleration sites in blazar jets. In addition, hadronic blazar models also predict a high level of polarization fraction in the MeV band, which can unambiguously distinguish the radiation mechanism. Future MeV missions with a large field of view, high sensitivity, and polarization capabilities will play a central role in multi-messenger astronomy, since pointed, high-resolution telescopes will follow neutrino alerts only when triggered by an all-sky instrument.



قيم البحث

اقرأ أيضاً

374 - Guenter Sigl 2012
This is a summary of a series of lectures on the current experimental and theoretical status of our understanding of origin and nature of cosmic radiation. Specific focus is put on ultra-high energy cosmic radiation above ~10^17 eV, including seconda ry neutral particles and in particular neutrinos. The most important open questions are related to the mass composition and sky distributions of these particles as well as on the location and nature of their sources. High energy neutrinos at GeV energies and above from extra-terrestrial sources have not yet been detected and experimental upper limits start to put strong contraints on the sources and the acceleration mechanism of very high energy cosmic rays.
The core mission of the IceCube Neutrino observatory is to study the origin and propagation of cosmic rays. IceCube, with its surface component IceTop, observes multiple signatures to accomplish this mission. Most important are the astrophysical neut rinos that are produced in interactions of cosmic rays, close to their sources and in interstellar space. IceCube is the first instrument that measures the properties of this astrophysical neutrino flux, and constrains its origin. In addition, the spectrum, composition and anisotropy of the local cosmic-ray flux are obtained from measurements of atmospheric muons and showers. Here we provide an overview of recent findings from the analysis of IceCube data, and their implications on our understanding of cosmic rays.
140 - Y. Q. Guo , H. B. Hu , Q. Yuan 2013
The origin of the knee in cosmic ray spectrum remains to be an unsolved fundamental problem. There are various kinds of models which predict different break positions and the compositions of the knee. In this work, we suggest to use diffuse $gamma$-r ays and neutrinos as probes to test these models. Based on several typical types of the composition models, the diffuse $gamma$-ray and neutrino spectra are calculated, which show distinctive cutoff behaviours at energies from tens of TeV to multi-PeV. The expected flux will be observable by the newly upgraded Tibet-AS$gamma$+MD (muon detector) experiment as well as more sensitive future projects, such as LHAASO and HiSCORE. By comparing the neutrino spectrum with the recent observations by IceCube experiment, we find that the diffuse neutrinos from interactions between the cosmic rays and the interstellar medium may not be responsible to the majority of the IceCube events. Future measurements of the neutrinos may be able to identify the Galactic diffuse component and further shed light on the problem of the knee of cosmic rays.
The cores of Arp 220, the closest ultra-luminous infrared starburst galaxy, provide an opportunity to study interactions of cosmic rays under extreme conditions. In this paper, we model the populations of cosmic rays produced by supernovae in the cen tral molecular zones of both starburst nuclei. We find that ~65 - 100% of cosmic rays are absorbed in these regions due to their huge molecular gas contents, and thus, the nuclei of Arp 220 nearly complete proton calorimeters. As the cosmic ray protons collide with the interstellar medium, they produce secondary electrons that are also contained within the system and radiate synchrotron emission. Using results from chi-squared tests between the model and the observed radio spectral energy distribution, we predict the emergent gamma-ray and high-energy neutrino spectra and find the magnetic field to be at milligauss levels. Because of the extremely intense far-infrared radiation fields, the gamma-ray spectrum steepens significantly at TeV energies due to gamma-gamma absorption.
We investigate the shock acceleration of particles in massive galaxy mergers or collisions, and show that cosmic rays (CRs) can be accelerated up to the second knee energy ~0.1-1 EeV and possibly beyond, with a hard spectral index Gamma ~ 2. Such CRs lose their energy via hadronuclear interactions within a dynamical timescale of the merger shock, producing gamma rays and neutrinos as a by-product. If ~ 10 % of the shock dissipated energy goes into CR acceleration, some local merging galaxies will produce gamma-ray counterparts detectable by CTA. Also, based on the concordance cosmology, where a good fraction of the massive galaxies experience a major merger in a cosmological timescale, the neutrino counterparts can constitute ~ 20-60 % of the isotropic background detected by IceCube.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا