ترغب بنشر مسار تعليمي؟ اضغط هنا

Wide-field Magnetic Field and Temperature Imaging using Nanoscale Quantum Sensors

89   0   0.0 ( 0 )
 نشر من قبل Christopher Foy
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The simultaneous imaging of magnetic fields and temperature (MT) is important in a range of applications, including studies of carrier transport, solid-state material dynamics, and semiconductor device characterization. Techniques exist for separately measuring temperature (e.g., infrared (IR) microscopy, micro-Raman spectroscopy, and thermo-reflectance microscopy) and magnetic fields (e.g., scanning probe magnetic force microscopy and superconducting quantum interference devices). However, these techniques cannot measure magnetic fields and temperature simultaneously. Here, we use the exceptional temperature and magnetic field sensitivity of nitrogen vacancy (NV) spins in conformally-coated nanodiamonds to realize simultaneous wide-field MT imaging. Our quantum conformally-attached thermo-magnetic (Q-CAT) imaging enables (i) wide-field, high-frame-rate imaging (100 - 1000 Hz); (ii) high sensitivity; and (iii) compatibility with standard microscopes. We apply this technique to study the industrially important problem of characterizing multifinger gallium nitride high-electron-mobility transistors (GaN HEMTs). We spatially and temporally resolve the electric current distribution and resulting temperature rise, elucidating functional device behavior at the microscopic level. The general applicability of Q-CAT imaging serves as an important tool for understanding complex MT phenomena in material science, device physics, and related fields.



قيم البحث

اقرأ أيضاً

Wide-field magnetometry can be realized by imaging the optically-detected magnetic resonance of diamond nitrogen vacancy (NV) center ensembles. However, NV ensemble inhomogeneities significantly limit the magnetic-field sensitivity of these measureme nts. We demonstrate a double-double quantum (DDQ) driving technique to facilitate wide-field magnetic imaging of dynamic magnetic fields at a micron scale. DDQ imaging employs four-tone radio frequency pulses to suppress inhomogeneity-induced variations of the NV resonant response. As a proof-of-principle, we use the DDQ technique to image the dc magnetic field produced by individual magnetic-nanoparticles tethered by single DNA molecules to a diamond sensor surface. This demonstrates the efficacy of the diamond NV ensemble system in high-frame-rate magnetic microscopy, as well as single-molecule biophysics applications.
Nitrogen-Vacancy centers in diamond possess an electronic spin resonance that strongly depends on temperature, which makes them efficient temperature sensor with a sensitivity down to a few mK/$sqrt{rm Hz}$. However, the high thermal conductivity of the host diamond may strongly damp any temperature variations, leading to invasive measurements when probing local temperature distributions. In view of determining possible and optimal configurations for diamond-based wide-field thermal imaging, we here investigate, both experimentally and numerically, the effect of the presence of diamond on microscale temperature distributions. Three geometrical configurations are studied: a bulk diamond substrate, a thin diamond layer bonded on quartz and diamond nanoparticles dispersed on quartz. We show that the use of bulk diamond substrates for thermal imaging is highly invasive, in the sense that it prevents any substantial temperature increase. Conversely, thin diamond layers partly solve this issue and could provide a possible alternative for microscale thermal imaging. Dispersions of diamond nanoparticles throughout the sample appear as the most relevant approach as they do not affect the temperature distribution, although NV centers in nanodiamonds yield lower temperature sensitivities compared to bulk diamond.
A realization of the force-induced remnant magnetization spectroscopy (FIRMS) technique of specific biomolecular binding is presented where detection is accomplished with wide-field optical and diamond-based magnetometry using an ensemble of nitrogen -vacancy (NV) color centers. The technique may be adapted for massively parallel screening of arrays of nanoscale samples.
The possibility of using Nitrogen-vacancy centers in diamonds to measure nanoscale magnetic fields with unprecedented sensitivity is one of the most significant achievements of quantum sensing. Here we present an innovative experimental set-up, showi ng an achieved sensitivity comparable to the state of the art ODMR protocols if the sensing volume is taken into account. The apparatus allows magnetic sensing in biological samples such as individual cells, as it is characterized by a small sensing volume and full bio-compatibility. The sensitivity at different optical powers is studied to extend this technique to the intercellular scale.
The energy resolution per bandwidth $E_R$ is a figure of merit that combines the field resolution, bandwidth or duration of the measurement, and size of the sensed region. Several different dc magnetometer technologies approach $E_R = hbar$, while to date none has surpassed this level. This suggests a technology-spanning quantum limit, a suggestion that is strengthened by model-based calculations for nitrogen-vacancy centres in diamond, for superconducting quantum interference device (SQUID) sensors, and for some optically-pumped alkali-vapor magnetometers, all of which predict a quantum limit close to $E_R = hbar$. Here we review what is known about energy resolution limits, with the aim to understand when and how $E_R$ is limited by quantum effects. We include a survey of reported sensitivity versus size of the sensed region for more than twenty magnetometer technologies, review the known model-based quantum limits, and critically assess possible sources for a technology-spanning limit, including zero-point fluctuations, magnetic self-interaction, and quantum speed limits. Finally, we describe sensing approaches that appear to be unconstrained by any of the known limits, and thus are candidates to surpass $E_R = hbar$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا