We present the discovery and statistical analysis of $12;660$ spotted variable stars toward and inside the Galactic bulge from over two-decade-long Optical Gravitational Lensing Experiment (OGLE) data. We devise a new method of dereddening of individual stars toward the Galactic bulge where strong and highly nonuniform extinction is present. In effect, $11;812$ stars were classified as giants and $848$ as dwarfs. Well defined correlations between the luminosity, variability amplitude and rotation period were found for the giants. Rapidly rotating dwarfs with periods $P leq 2$ d show I-band amplitudes lower than 0.2 mag which is substantially less than the amplitudes of up to 0.8 mag observed in giants and slowly rotating dwarfs. We also notice that amplitudes of stars brighter than $I_0 approx 16$ mag do not exceed 0.3-0.4 mag. We divide the stars into three groups characterized by correlation between light and color variations. The positive correlation is characteristic for stars that are cooler when fainter, which results from the variable coverage of the stellar surface with spots similar to the sunspots. The variability of stars that are cooler when brighter (negative correlation) can be characterized by chemical spots with overabundance of heavy elements inside and variable line-blanketing effect, which is observed in chemically peculiar stars. The null correlation may results from very high level of the magnetic activity with rapidly variable magnetic fields. This division is readily visible on the color-magnitude diagram (CMD), which suggests that it may depend on the radius of the stars. We detect 79 flaring objects and discuss briefly their properties. Among others, we find that relative brightening during flares is correlated with brightness amplitude.