ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanoscale patterning of quasiparticle band alignment

126   0   0.0 ( 0 )
 نشر من قبل Philip Hofmann
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Control of atomic-scale interfaces between materials with distinct electronic structures is crucial for the design and fabrication of most electronic devices. In the case of two-dimensional (2D) materials, disparate electronic structures can be realized even within a single uniform sheet, merely by locally applying different vertical bias voltages. Indeed, it has been suggested that nanoscale electronic patterning in a single sheet can be achieved by placing the 2D material on a suitably pre-patterned substrate, exploiting the sensitivity of 2D materials to their environment via band alignment, screening or hybridization. Here, we utilize the inherently nano-structured single layer (SL) and bilayer (BL) graphene on silicon carbide to laterally tune the electrostatic gating of adjacent SL tungsten disulphide (WS$_2$) in a van der Waals heterostructure. The electronic band alignments are mapped in energy and momentum space using angle-resolved photoemission with a spatial resolution on the order of 500~nm (nanoARPES). We find that the SL WS$_2$ band offsets track the work function of the underlying SL and BL graphene, and we relate such changes to observed lateral patterns of exciton and trion luminescence from SL WS$_2$, demonstrating ultimate control of optoelectronic properties at the nanoscale.



قيم البحث

اقرأ أيضاً

N-Heteropolycyclic aromatic compounds are promising organic electron-transporting semiconductors for applications in field effect transistors. Here, we investigated the electronic properties of 1,3,8,10-tetraazaperopyrene derivatives adsorbed on Au(1 11) using a complementary experimental approach, namely scanning tunneling spectroscopy and two-photon photoemission combined with state-of-the-art density functional calculations. We find signatures of weak physisorption of the molecular layers, such as the absence of charge transfer, a nearly unperturbed surface state and an intact herringbone reconstruction underneath the molecular layer. Interestingly, molecular states in the energy region of the emph{sp}- and emph{d}-bands of the Au(111) substrate exhibit hole-like dispersive character. We ascribe this band character to hybridization with the delocalized states of the substrate. We suggest that such bands, which effectively leave the molecular frontier orbitals largely unperturbed, to be a promising lead for the design of organic-metal interfaces with a low charge injection barrier.
Excitons in monolayer semiconductors have large optical transition dipole for strong coupling with light field. Interlayer excitons in heterobilayers, with layer separation of electron and hole components, feature large electric dipole that enables s trong coupling with electric field and exciton-exciton interaction, at the cost that the optical dipole is substantially quenched (by several orders of magnitude). In this letter, we demonstrate the ability to create a new class of excitons in transition metal dichalcogenide (TMD) hetero- and homo-bilayers that combines the advantages of monolayer- and interlayer-excitons, i.e. featuring both large optical dipole and large electric dipole. These excitons consist of an electron that is well confined in an individual layer, and a hole that is well extended in both layers, realized here through the carrier-species specific layer-hybridization controlled through the interplay of rotational, translational, band offset, and valley-spin degrees of freedom. We observe different species of such layer-hybridized valley excitons in different heterobilayer and homobilayer systems, which can be utilized for realizing strongly interacting excitonic/polaritonic gases, as well as optical quantum coherent controls of bidirectional interlayer carrier transfer either with upper conversion or down conversion in energy.
The exciton spin dynamics are investigated both experimentally and theoretically in two-monolayer-thick GaAs/AlAs quantum wells with an indirect band gap and a type-II band alignment. The magnetic-field-induced circular polarization of photoluminesce nce, $P_c$, is studied as function of the magnetic field strength and direction as well as sample temperature. The observed nonmonotonic behaviour of these functions is provided by the interplay of bright and dark exciton states contributing to the emission. To interpret the experiment, we have developed a kinetic master equation model which accounts for the dynamics of the spin states in this exciton quartet, radiative and nonradiative recombination processes, and redistribution of excitons between these states as result of spin relaxation. The model offers quantitative agreement with experiment and allows us to evaluate, for the studied structure, the heavy-hole $g$ factor, $g_{hh}=+3.5$, and the spin relaxation times of electron, $tau_{se} = 33~mu$s, and hole, $tau_{sh} = 3~mu$s, bound in the exciton.
We report an electron-beam based method for the nanoscale patterning of the poly(ethylene oxide)/LiClO$_{4}$ polymer electrolyte. We use the patterned polymer electrolyte as a high capacitance gate dielectric in single nanowire transistors and obtain subthreshold swings comparable to conventional metal/oxide wrap-gated nanowire transistors. Patterning eliminates gate/contact overlap which reduces parasitic effects and enables multiple, independently controllable gates. The methods simplicity broadens the scope for using polymer electrolyte gating in studies of nanowires and other nanoscale devices.
Exotic electronic states are realized in novel quantum materials. This field is revolutionized by the topological classification of materials. Such compounds necessarily host unique states on their boundaries. Scanning tunneling microscopy studies of these surface states have provided a wealth of spectroscopic characterization, with the successful cooperation of ab initio calculations. The method of quasiparticle interference imaging proves to be particularly useful for probing the dispersion relation of the surface bands. Herein, how a variety of additional fundamental electronic properties can be probed via this method is reviewed. It is demonstrated how quasiparticle interference measurements entail mesoscopic size quantization and the electronic phase coherence in semiconducting nanowires; helical spin protection and energy-momentum fluctuations in a topological insulator; and the structure of the Bloch wave function and the relative insusceptibility of topological electronic states to surface potential in a topological Weyl semimetal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا