ﻻ يوجد ملخص باللغة العربية
In 2013, Gau and Wu introduced a unitary invariant, denoted by $k(A)$, of an $ntimes n$ matrix $A$, which counts the maximal number of orthonormal vectors $textbf x_j$ such that the scalar products $langle Atextbf x_j,textbf x_jrangle$ lie on the boundary of the numerical range $W(A)$. We refer to $k(A)$ as the Gau--Wu number of the matrix $A$. In this paper we take an algebraic geometric approach and consider the effect of the singularities of the base curve, whose dual is the boundary generating curve, to classify $k(A)$. This continues the work of Wang and Wu classifying the Gau-Wu numbers for $3times 3$ matrices. Our focus on singularities is inspired by Chien and Nakazato, who classified $W(A)$ for $4times 4$ unitarily irreducible $A$ with irreducible base curve according to singularities of that curve. When $A$ is a unitarily irreducible $ntimes n$ matrix, we give necessary conditions for $k(A) = 2$, characterize $k(A) = n$, and apply these results to the case of unitarily irreducible $4times 4$ matrices. However, we show that knowledge of the singularities is not sufficient to determine $k(A)$ by giving examples of unitarily irreducible matrices whose base curves have the same types of singularities but different $k(A)$. In addition, we extend Chien and Nakazatos classification to consider unitarily irreducible $A$ with reducible base curve and show that we can find corresponding matrices with identical base curve but different $k(A)$. Finally, we use the recently-proved Lax Conjecture to give a new proof of a theorem of Helton and Spitkovsky, generalizing their result in the process.
The notion of dichotomous matrices is introduced as a natural generalization of essentially Hermitian matrices. A criterion for arrowhead matrices to be dichotomous is established, along with necessary and sufficient conditions for such matrices to b
Gau, Wang and Wu in their LAMA2016 paper conjectured (and proved for $nleq 4$) that an $n$-by-$n$ partial isometry cannot have a circular numerical range with a non-zero center. We prove that this statement holds also for $n=5$.
Let $G$ be a topological Abelian semigroup with unit, let $E$ be a Banach space, and let $C(G,E)$ denote the set of continuous functions $fcolon Gto E$. A function $fin C(G,E)$ is a generalized polynomial, if there is an $nge 0$ such that $Delta_{h_1
We obtain asymptotics for Toeplitz, Hankel, and Toeplitz+Hankel determinants whose symbols possess Fisher-Hartwig singularities. Details of the proofs will be presented in another publication.
In this paper, equivalence constants between various polynomial norms are calculated. As an application, we also obtain sharp values of the Hardy--Littlewood constants for $2$-homogeneous polynomials on $ell_p^2$ spaces, $2<pleqinfty$ and lower estimates for polynomials of higher degrees.