Stellar multiplicity: an interdisciplinary nexus


الملخص بالإنكليزية

Our uncertainties about binary star systems (and triples and so on) limit our capabilities in literally every single one of the Thematic Areas identified for Astro2020. We need to understand the population statistics of stellar multiplicity and their variations with stellar type, chemistry, and dynamical environment: Correct interpretation of any exoplanet experiment depends on proper treatment of resolved and unresolved binaries; stellar multiplicity is a direct outcome of star and companion formation; the most precise constraints on stellar structure come from well-characterized binary systems; stellar populations heavily rely on stellar and binary evolution modeling; high-redshift galaxy radiation and reionization is controlled by binary-dependent stellar physics; compact objects are the outcomes of binary evolution; the interpretation of multi-messenger astronomy from gravitational waves, light, and neutrinos relies on understanding the products of binary star evolution; near-Universe constraints on the Hubble constant with Type Ia supernovae and gravitational-wave mergers are subject to systematics related to their binary star progenitors; local measures of dark-matter substructure masses are distorted by binary populations. In order to realize the scientific goals in each of these themes over the next decade, we therefore need to understand how binary stars and stellar multiplets are formed and distributed in the space of masses, composition, age, and orbital properties, and how the distribution evolves with time. This white paper emphasizes the interdisciplinary importance of binary-star science and advocates that coordinated investment from all astrophysical communities will benefit almost all branches of astrophysics.

تحميل البحث