ﻻ يوجد ملخص باللغة العربية
We show by spatially and time-resolved photoluminescence that the application of an electric field transverse to the plane of an intrinsic GaAs (111) quantum well (QW) allows the transport of photogenerated electron spins polarized along the direction perpendicular to the QW plane over distances exceeding 10~$mu$m. We attribute the long spin transport lengths to the compensation of the in-plane effective magnetic field related to the intrinsic spin-orbit (SO) interaction by means of the electrically generated SO-field. Away from SO-compensation, the precession of the spin vector around the SO-field decreases the out-of-plane polarization of the spin ensemble as the electrons move away from the laser generation spot. The results are reproduced by a model for two-dimensional drift-diffusion of spin polarized charge carriers under weak SO-interaction.
We present a microscopic theory for transport of the spin polarized charge density wave with both electrons and holes in the $(111)$ GaAs quantum wells. We analytically show that, contradicting to the commonly accepted belief, the spin and charge mot
Spin dephasing via the spin-orbit interaction (SOI) is a major mechanism limiting the electron spin lifetime in III-V zincblende quantum wells. The dephasing can be suppressed in GaAs(111) quantum wells by applying an electric field. The suppression
The electron spin dynamics is studied by time-resolved Kerr rotation in GaAs/AlGaAs quantum wells embedded in a negatively doped-intrinsic-positively doped structures grown on (111)A or (111)B-oriented substrates. In both cases the spin lifetimes are
We discuss control of the quantum-transport properties of a mesoscopic device by connecting it in a coherent feedback loop with a quantum-mechanical controller. We work in a scattering approach and derive results for the combined scattering matrix of
Electron spin transport and dynamics are investigated in a single, high-mobility, modulation-doped, GaAs quantum well using ultrafast two-color Kerr-rotation micro-spectroscopy, supported by qualitative kinetic theory simulations of spin diffusion an