ﻻ يوجد ملخص باللغة العربية
While recently discovered exotic new planet-types have both challenged our imaginations and broadened our knowledge of planetary system workings, perhaps the most compelling objective of exoplanet science is to detect and characterize habitable and possibly inhabited worlds orbiting in other star systems. For the foreseeable future, characterizations of extrasolar planets will be made via remote sensing of planetary spectroscopic and temporal signals, along with careful fitting of this data to advanced models of planets and their atmospheres. Terrestrial planets are small and significantly more challenging to observe compared to their larger gaseous brethren; however observatories coming on-line in the coming decade will begin to allow their characterization. Still, it is not enough to invest only in observational endeavors. Comprehensive modeling of planetary atmospheres is required in order to fully understand what it is that our grand telescopes see in the night-sky. In our quest to characterize habitable, and possibly inhabited worlds, 3D general circulation models (GCMs) should be used to evaluate potential climate states and their associated temporal and spatial dependent observable signals. 3D models allow for coupled, self-consistent, multi-dimensional simulations, which can realistically simulate the climates of terrestrial extrasolar planets. A complete theoretical understanding of terrestrial exoplanetary atmospheres, gained through comprehensive 3D modeling, is critical for interpreting spectra of exoplanets taken from current and planned instruments, and is critical for designing future missions that aim to measure spectra of potentially habitable exoplanets as one of their key science goals. We recommend continued institutional support for 3D GCM modeling teams that focus on planetary and exoplanetary applications.
The climate and circulation of a terrestrial planet are governed by, among other things, the distance to its host star, its size, rotation rate, obliquity, atmospheric composition and gravity. Here we explore the effects of the last of these, the New
The habitable zone (HZ) describes the range of orbital distances around a star where the existence of liquid water on the surface of an Earth-like planet is in principle possible. While 3D climate studies can calculate the water vapor, ice albedo, an
Stellar radiation has conservatively been used as the key constraint to planetary habitability. We review here the effects of tides, exerted by the host star on the planet, on the evolution of the planetary spin. Tides initially drive the rotation pe
The current progress in the detection of terrestrial type exoplanets has opened a new avenue in the characterization of exoplanetary atmospheres and in the search for biosignatures of life with the upcoming ground-based and space missions. To specify
The recent detections of temperate terrestrial planets orbiting nearby stars and the promise of characterizing their atmospheres motivates a need to understand how the diversity of possible planetary parameters affects the climate of terrestrial plan