ﻻ يوجد ملخص باللغة العربية
In this paper, we consider discrete time random walks on the pseudofractal scale-free web (PSFW) and we study analytically the related first passage properties. First, we classify the nodes of the PSFW into different levels and propose a method to derive the generation function of the first passage probability from an arbitrary starting node to the absorbing domain, which is located at one or more nodes of low-level (i.e., nodes with large degree). Then, we calculate exactly the first passage probability, the survival probability, the mean and the variance of first passage time by using the generating functions as a tool. Finally, for some illustrative examples corresponding to given choices of starting node and absorbing domain, we derive exact and explicit results for such first passage properties. The method we propose can as well address the cases where the absorbing domain is located at one or more nodes of high-level on the PSFW, and it can also be used to calculate the first passage properties on other networks with self-similar structure, such as $(u, v)$ flowers and recursive scale-free trees.
The explicit determinations of the mean first-passage time (MFPT) for trapping problem are limited to some simple structure, e.g., regular lattices and regular geometrical fractals, and determining MFPT for random walks on other media, especially com
Levy Flights are paradigmatic generalised random walk processes, in which the independent stationary increments---the jump lengths---are drawn from an $alpha$-stable jump length distribution with long-tailed, power-law asymptote. As a result, the var
With nontrivial entropy production, first passage process is one of the most common nonequilibrium process in stochastic thermodynamics. Using one dimensional birth and death precess as a model framework, approximated expressions of mean first passag
We study the extremal properties of a stochastic process $x_t$ defined by a Langevin equation $dot{x}_t=sqrt{2 D_0 V(B_t)},xi_t$, where $xi_t$ is a Gaussian white noise with zero mean, $D_0$ is a constant scale factor, and $V(B_t)$ is a stochastic di
An efficient searcher needs to balance properly the tradeoff between the exploration of new spatial areas and the exploitation of nearby resources, an idea which is at the core of scale-free Levy search strategies. Here we study multi-scale random wa