ﻻ يوجد ملخص باللغة العربية
We present new methods to solve the Riemann problem both exactly and approximately for general equations of state (EoS) to facilitate realistic modeling and understanding of astrophysical flows. The existence and uniqueness of the new exact general EoS Riemann solution can be guaranteed if the EoS is monotone regardless of the physical validity of the EoS. We confirm that: (1) the solution of the new exact general EoS Riemann solver and the solution of the original exact Riemann solver match when calculating perfect gas Euler equations; (2) the solution of the new Harten-Lax-van Leer-Contact (HLLC) general EoS Riemann solver and the solution of the original HLLC Riemann solver match when working with perfect gas EoS; and (3) the solution of the new HLLC general EoS Riemann solver approaches the new exact solution. We solve the EoS with two methods, one is to interpolate 2D EoS tables by the bi-linear interpolation method, and the other is to analytically calculate thermodynamic variables at run-time. The interpolation method is more general as it can work with other monotone and realistic EoS while the analytic EoS solver introduced here works with a relatively idealized EoS. Numerical results confirm that the accuracy of the two EoS solvers is similar. We study the efficiency of these two methods with the HLLC general EoS Riemann solver and find that analytic EoS solver is faster in the test problems. However, we point out that a combination of the two EoS solvers may become favorable in some specific problems. Throughout this research, we assume local thermal equilibrium.
A discontinuous Galerkin (DG) method suitable for large-scale astrophysical simulations on Cartesian meshes as well as arbitrary static and moving Voronoi meshes is presented. Most major astrophysical fluid dynamics codes use a finite volume (FV) app
A new Riemann solver is presented for the ideal magnetohydrodynamics (MHD) equations with the so-called Boris correction. The Boris correction is applied to reduce wave speeds, avoiding an extremely small timestep in MHD simulations. The proposed Rie
Due to increase in computing power, high-order Eulerian schemes will likely become instrumental for the simulations of turbulence and magnetic field amplification in astrophysical fluids in the next years. We present the implementation of a fifth ord
An accurate knowledge of the neutron capture cross sections of 62,63Ni is crucial since both isotopes take key positions which affect the whole reaction flow in the weak s process up to A=90. No experimental value for the 63Ni(n,gamma) cross section
Occurring in protoplanetary discs composed of dust and gas, streaming instabilities are a favoured mechanism to drive the formation of planetesimals. The Polydispserse Streaming Instability is a generalisation of the Streaming Instability to a contin