ﻻ يوجد ملخص باللغة العربية
On-line social networks, such as in Facebook and Twitter, are often studied from the perspective of friendship ties between agents in the network. Adversarial ties, however, also play an important role in the structure and function of social networks, but are often hidden. Underlying generative mechanisms of social networks are predicted by structural balance theory, which postulates that triads of agents, prefer to be transitive, where friends of friends are more likely friends, or anti-transitive, where adversaries of adversaries become friends. The previously proposed Iterated Local Transitivity (ILT) and Iterated Local Anti-Transitivity (ILAT) models incorporated transitivity and anti-transitivity, respectively, as evolutionary mechanisms. These models resulted in graphs with many observable properties of social networks, such as low diameter, high clustering, and densification. We propose a new, generative model, referred to as the Iterated Local Model (ILM) for social networks synthesizing both transitive and anti-transitive triads over time. In ILM, we are given a countably infinite binary sequence as input, and that sequence determines whether we apply a transitive or an anti-transitive step. The resulting model exhibits many properties of complex networks observed in the ILT and ILAT models. In particular, for any input binary sequence, we show that asymptotically the model generates finite graphs that densify, have clustering coefficient bounded away from 0, have diameter at most 3, and exhibit bad spectral expansion. We also give a thorough analysis of the chromatic number, domination number, Hamiltonicity, and isomorphism types of induced subgraphs of ILM graphs.
We study a model of opinion exchange in social networks where a state of the world is realized and every agent receives a zero-mean noisy signal of the realized state. It is known from Golub and Jackson that under the DeGroot dynamics agents reach a
Let $G$ be a directed graph such that the in-degree of any vertex $G$ is at least one. Let also ${mathcal{tau}}: V(G)rightarrow Bbb{N}$ be an assignment of thresholds to the vertices of $G$. A subset $M$ of vertices of $G$ is called a dynamic monopol
In this paper, we propose a generalized opinion dynamics model (GODM), which can dynamically compute each persons expressed opinion, to solve the internal opinion maximization problem for social trust networks. In the model, we propose a new, reasona
For generalized Dyck paths (i.e., directed lattice paths with any finite set of jumps), we analyse their local time at zero (i.e., the number of times the path is touching or crossing the abscissa). As we are in a discrete setting, the event we analy
Numerical analysis of data from international trade and ecological networks has shown that the non-linear fitness-complexity metric is the best candidate to rank nodes by importance in bipartite networks that exhibit a nested structure. Despite its r