ﻻ يوجد ملخص باللغة العربية
We study a diffuse interface model describing the motion of two viscous fluids driven by the surface tension in a Hele-Shaw cell. The full system consists of the Cahn-Hilliard equation coupled with the Darcys law. We address the physically relevant case in which the two fluids have different viscosities (unmatched viscosities case) and the free energy density is the logarithmic Helmholtz potential. In dimension two we prove the uniqueness of weak solutions under a regularity criterion, and the existence and uniqueness of global strong solutions. In dimension three we show the existence and uniqueness of strong solutions, which are local in time for large data or global in time for appropriate small data. These results extend the analysis obtained in the matched viscosities case by Giorgini, Grasselli and Wu (Ann. Inst. H. Poincar{e} Anal. Non Lin{e}aire 35 (2018), 318-360). Furthermore, we prove the uniqueness of weak solutions in dimension two by taking the well-known polynomial approximation of the logarithmic potential.
A semi-explicit formula of solution to the boundary layer system for thermal layer derived from the compressible Navier-Stokes equations with the non-slip boundary condition when the viscosity coefficients vanish is given, in particular in three spac
The flow in a Hele-Shaw cell with a time-increasing gap poses a unique shrinking interface problem. When the upper plate of the cell is lifted perpendicularly at a prescribed speed, the exterior less viscous fluid penetrates the interior more viscous
We consider a diffuse interface model for incompressible isothermal mixtures of two immiscible fluids with matched constant densities. This model consists of the Navier-Stokes system coupled with a convective nonlocal Cahn-Hilliard equation with non-
We study the Abels-Garcke-Grun (AGG) model for a mixture of two viscous incompressible fluids with different densities. The AGG model consists of a Navier-Stokes-Cahn-Hilliard system characterized by a (non-constant) concentration-dependent density a
We consider a diffuse interface model of tumor growth proposed by A.~Hawkins-Daruud et al. This model consists of the Cahn-Hilliard equation for the tumor cell fraction $varphi$ nonlinearly coupled with a reaction-diffusion equation for $psi$, which