ﻻ يوجد ملخص باللغة العربية
We consider a new technique for neutrino energy and topology reconstruction at DUNE. In particular, we show that when the direction of the incoming neutrino is known, one can use the measured directions of the outgoing leptonic and hadronic particles to reconstruct poorly-measured quantities, such as the hadronic cascade energy. We show that this alternative technique yields an energy resolution which is comparable to current reconstruction methods which sum measured energies. As a proof of concept we apply this new reconstruction method to a search for dark matter annihilation in the Sun. We show that the use of directional information from both the leptonic and hadronic interaction products allows one to effectively reject backgrounds and isolate the signal, giving competitive sensitivities.
Weakly interacting massive particles (WIMPs) can be gravitationally captured by the Sun and trapped in its core. The annihilation of those WIMPs into Standard Model particles produces a spectrum of neutrinos whose energy distribution is related to th
A search for muon neutrinos originating from dark matter annihilations in the Sun is performed using the data recorded by the ANTARES neutrino telescope from 2007 to 2012. In order to obtain the best possible sensitivities to dark matter signals, an
We are at the dawn of a data-driven era in astrophysics and cosmology. A large number of ongoing and forthcoming experiments combined with an increasingly open approach to data availability offer great potential in unlocking some of the deepest myste
A search for high-energy neutrinos coming from the direction of the Sun has been performed using the data recorded by the ANTARES neutrino telescope during 2007 and 2008. The neutrino selection criteria have been chosen to maximize the selection of p
Cosmic rays interacting in the solar atmosphere produce showers that result in a flux of high-energy neutrinos from the Sun. These form an irreducible background to indirect solar WIMP co-annihilation searches, which look for heavy dark matter partic