ﻻ يوجد ملخص باللغة العربية
With an aim to investigate how the surface abundances of intermediate-mass stars off the main sequence (evolving toward the red-giant stage) are affected by the evolution-induced envelope mixing, we spectroscopically determined the abundances of Li, C, N, O, and Na for selected 62 late A through G subgiants, giants, and supergiants, which are often called Hertzsprung-gap stars, by applying the synthetic spectrumfitting technique to Li I 6708, C I 5380, N I 7460, O I 6156-8, and Na I 6161 lines. A substantially large star-to-star dispersion (> 2 dex) was confirmed for the Li abundances, indicating that this vulnerable element can either suffer significant depletion before the red-giant stage or almost retain the primordial composition. Regarding C, N, O, and Na possibly altered by dredge-up of nuclear-processed products, their abundances turned out to show considerable scatter. This suggests that these abundance results are likely to suffer appreciable uncertainties, the reason for which is not clear but might be due to some kind of inadequate modeling for the atmospheric structure. Yet, paying attention to the fact that the relative abundance ratios between C, N, and O should be more reliable (because systematic errors may be canceled as lines of similar properties are used for these species), we could confirm a positive correlation between [O/C] (ranging from ~0 to ~+0.5 dex) and [N/C] (showing a larger spread from ~0 to ~+1 dex), which is reasonably consistent with the theoretical prediction. This observational detection of C deficiency as well as N enrichment in our program stars manifestly indicates that the dredge-up of H-burning product can take place before entering the red-giant stage, with its extent differing from star to star.
We study a group of evolved M-stars in the Large Magellanic Cloud, characterized by a peculiar spectral energy distribution. While the $9.7~mu$m feature arises from silicate particles, the whole infrared data seem to suggest the presence of an additi
As the opening review to the focus meeting ``Stellar Behemoths: Red Supergiants across the Local Universe, I here provide a brief introduction to red supergiants, setting the stage for subsequent contributions. I highlight some recent activity in the
Context: When crossing the Hertzsprung gap, intermediate-mass stars develop a convective envelope. Fast rotators on the main sequence, or Ap star descendants, are expected to become magnetic active subgiants during this evolutionary phase. Aims: We c
The distribution of stars in the Hertzsprung-Russell diagram narrates their evolutionary history and directly assesses their properties. Placing stars in this diagram however requires the knowledge of their distances and interstellar extinctions, whi
People cannot witness the stellar evolution process of a single star obviously in most cases because of its extremely secular time-scale, except for some special time nodes in it (such as the supernova explosion). But in some specific evolutionary ph