ﻻ يوجد ملخص باللغة العربية
The radiative and mechanical interaction of stars with their environment drives the evolution of the ISM and of galaxies as a whole. The far-IR emission (lambda ~30 to 350 microns) from atoms and molecules dominates the cooling of the warm gas in the neutral ISM, the material that ultimately forms stars. Far-IR lines are thus the most sensitive probes of stellar feedback processes, and allow us to quantify the deposition and cycling of energy in the ISM. While ALMA (in the (sub)mm) and JWST (in the IR) provide astonishing sub-arcsecond resolution images of point sources and their immediate environment, they cannot access the main interstellar gas coolants, nor are they designed to image entire star-forming regions (SFRs). Herschel far-IR photometric images of the interstellar dust thermal emission revealed the ubiquitous large-scale filamentary structure of SFRs, their mass content, and the location of thousands of prestellar cores and protostars. These images, however, provide a static view of the ISM: not only they dont constrain the cloud dynamics, moreover they cannot reveal the chemical composition and energy transfer within the cloud, thus giving little insight into the regulation process of star formation by stellar feedback. In this white paper we emphasize the need of a space telescope with wide-field spectral-imaging capabilities in the critical far-IR domain.
The circumstellar dust shells of intermediate initial-mass (about 1 to 8 solar masses) evolved stars are generated by copious mass loss during the asymptotic giant branch phase. The density structure of their circumstellar shell is the direct evidenc
We present a wide area (~ 8 x 8 kpc), sensitive map of CO (2-1) emission around the nearby starburst galaxy M82. Molecular gas extends far beyond the stellar disk, including emission associated with the well-known outflow as far as 3 kpc from M82s mi
The BL Lacertae object OJ 287 (z = 0.306) has unique double-peaked optical outbursts every ~12 years, and it presents one of the best cases for a small-separation binary supermassive black hole (SMBH) system, with an extremely massive primary log (M_
We have carried out a statistical study on the mid- and far-infrared (IR) properties of Galactic IR bubbles observed by Spitzer. Using the Spitzer 8 ${mu}{rm m}$ images, we estimated the radii and covering fractions of their shells, and categorized t
The Stephans Quintet (SQ, HCG92) was observed with the Far-Infrared Surveyor (FIS) aboard AKARI in four far-infrared (IR) bands at 65, 90, 140, and 160 um. The AKARI four-band images of the SQ show far-IR emission in the intergalactic medium (IGM) of