ﻻ يوجد ملخص باللغة العربية
We present new Karl G. Jansky Very Large Array (VLA, 1.5 GHz) radio data for the giant elliptical galaxy IC 4296, supported by archival radio, X-ray (Chandra, XMM-Newton) and optical (SOAR, HST) observations. The galaxy hosts powerful radio jets piercing through the inner hot X-ray emitting atmosphere, depositing most of the energy into the ambient intra-cluster medium (ICM). Whereas the radio surface brightness of the A configuration image is consistent with a Fanaroff-Riley Class I (FR I) system, the D configuration image shows two bright, relative to the central region, large (~160 kpc diameter), well-defined lobes, previously reported by Killeen et al., at a projected distance r~>230 kpc. The XMM-Newton image reveals an X-ray cavity associated with one of the radio lobes. The total enthalpy of the radio lobes is ~7x10^59 erg and the mechanical power output of the jets is ~10^44 erg/s. The jets are mildly curved and possibly re-brightened by the relative motion of the galaxy and the ICM. The lobes display sharp edges, suggesting the presence of bow shocks, which would indicate that they are expanding supersonically. The central entropy and cooling time of the X-ray gas are unusually low and the nucleus hosts a warm Halpha+[NII] nebula and a cold molecular CO disk. Because most of the energy of the jets is deposited far from the nucleus, the atmosphere of the galaxy continues to cool, apparently feeding the central supermassive black hole and powering the jet activity.
The nearby elliptical galaxy IC4296 has produced a large (510 kpc) low-luminosity radio source with typical FR I core/jet/lobe morphology. The unprecedented combination of brightness sensitivity, dynamic range, and angular resolution of a new 1.28 GH
We present an analysis of deep Chandra X-ray observations of the galaxy cluster MS 0735.6+7421, which hosts the most energetic radio AGN known. Our analysis has revealed two cavities in its hot atmosphere with diameters of 200-240 kpc. The total cavi
Several galaxy clusters are known to present multiple and misaligned pairs of cavities seen in X-rays, as well as twisted kiloparsec-scale jets at radio wavelengths. It suggests that the AGN precessing jets play a role in the formation of the misalig
Synchrotron self-absorption in active galactic nuclei (AGN) jets manifests itself as a time delay between flares observed at high and low radio frequencies. It is also responsible for the observing frequency dependent change in size and position of t
We aim to determine the properties of the central region of NGC 1052 using X-ray and radio data. NGC 1052 (z=0.005) has been investigated for decades in different energy bands and shows radio lobes and a low luminosity active galactic nucleus (LLAGN)