ﻻ يوجد ملخص باللغة العربية
Recently, relations connecting the SMBH mass of central galaxies and global properties of the hosting cluster, such as temperature and mass, were observed. We investigate the correlation between SMBH mass and cluster mass and temperature, their establishment and evolution. We compare their scatter to that of the classical $M_{rm BH}-M_{rm BCG}$ relation. We study how gas accretion and BH-BH mergers contribute to SMBH growth across cosmic time. We employed 135 groups and clusters with a mass range $1.4times 10^{13}M_{odot}-2.5times 10^{15} M_{odot}$ extracted from a set of 29 zoom-in cosmological hydro-dynamical simulations where the baryonic physics is treated with various sub-grid models, including feedback by AGN. In our simulations we find that $M_{rm BH}$ correlates well with $M_{500}$ and $T_{500}$, with the scatter around these relations compatible within $2sigma$ with the scatter around $M_{rm BH}-M_{rm BCG}$ at $z=0$. The $M_{rm BH}-M_{500}$ relation evolves with time, becoming shallower at lower redshift as a direct consequence of hierarchical structure formation. On average, in our simulations the contribution of gas accretion to the total SMBH mass dominates for the majority of the cosmic time ($z>0.4$), while in the last 2 Gyr the BH-BH mergers become a larger contributor. During this last process, substructures hosting SMBHs are disrupted in the merger process with the BCG and the unbound stars enrich the diffuse stellar component rather than increase BCG mass. From the results obtained in our simulations with simple sub-grid models we conclude that the scatter around the $M_{rm BH}-T_{500}$ relation is comparable to the scatter around the $M_{rm BH}-M_{rm BCG}$ relation and that, given the observational difficulties related to the estimation of the BCG mass, clusters temperature and mass can be a useful proxy for the SMBHs mass, especially at high redshift.
We analyze the stellar growth of Brightest Cluster Galaxies (BCGs) produced by cosmological zoom-in hydrodynamical simulations of the formation of massive galaxy clusters. The evolution of the stellar mass content is studied considering different ape
We investigate a mechanism for a super-massive black hole at the center of a galaxy to wander in the nucleus region. A situation is supposed in which the central black hole tends to move by the gravitational attractions from the nearby molecular clou
We present a discovery of the correlation between the X-ray spectral (photon) index and mass accretion rate observed in AGN NGC 4051. We analyzed spectral transition episodes observed in NGC 4051 using XMM/Newton, Suzaku and RXTE. We applied a scalin
(Abridged) By means of high-resolution cosmological simulations in the context of the LCDM scenario, the specific star formation rate (SSFR=SFR/Ms, Ms is the stellar mass)--Ms and stellar mass fraction (Fs=Ms/Mh, Mh is the halo mass)--Ms relations of
Supermassive black holes (BHs) residing in the brightest cluster galaxies are over-massive relative to the stellar bulge mass or central stellar velocity dispersion of their host galaxies. As BHs residing at the bottom of the galaxy clusters potentia