ترغب بنشر مسار تعليمي؟ اضغط هنا

Data-driven stellar parameters for southern TESS FGK targets

102   0   0.0 ( 0 )
 نشر من قبل Niall Deacon
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N.R. Deacon




اسأل ChatGPT حول البحث

We present stellar parameter estimates for 939,457 southern FGK stars that are candidate targets for the TESS mission. Using a data-driven method similar to the CANNON, we build a model of stellar colours as a function of stellar parameters. We then use these in combination with stellar evolution models to estimate the effective temperature, gravity, metallicity, mass, radius and extinction for our selected targets. Our effective temperature estimates compare well with those from spectroscopic surveys and the addition of Gaia DR2 parallaxes allows us to identify subgiant interlopers into the TESS sample. We are able to estimate the radii of TESS targets with a typical uncertainty of 9.3%. This catalogue can be used to screen exoplanet candidates from TESS and provides a homogeneous set of stellar parameters for statistical studies.



قيم البحث

اقرأ أيضاً

Large exoplanet surveys have successfully detected thousands of exoplanets to-date. Utilizing these detections and non-detections to constrain our understanding of the formation and evolution of planetary systems also requires a detailed understandin g of the basic properties of their host stars. We have determined the basic stellar properties of F, K, and G stars in the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) survey from echelle spectra taken at the Apache Point Observatorys 3.5m telescope. Using ROBOSPECT to extract line equivalent widths and TGVIT to calculate the fundamental parameters, we have computed Teff, log(g), vt, [Fe/H], chromospheric activity, and the age for our sample. Our methodology was calibrated against previously published results for a portion of our sample. The distribution of [Fe/H] in our sample is consistent with that typical of the Solar neighborhood. Additionally, we find the ages of most of our sample are $< 500 Myrs$, but note that we cannot determine robust ages from significantly older stars via chromospheric activity age indicators. The future meta-analysis of the frequency of wide stellar and sub-stellar companions imaged via the SEEDS survey will utilize our results to constrain the occurrence of detected co-moving companions with the properties of their host stars.
The Transiting Exoplanet Survey Satellite (TESS) will provide high precision time-series photometry for millions of stars with at least a half-hour cadence. Of particular interest are the circular regions of 12-degree radius centered around the eclip tic poles that will be observed continuously for a full year. Spectroscopic stellar parameters are desirable to characterize and select suitable targets for TESS, whether they are focused on exploring exoplanets, stellar astrophysics, or Galactic archaeology. Here, we present spectroscopic stellar parameters ($T_{rm eff}$, $log g$, [Fe/H], $v sin i$, $v_{rm micro}$) for about 16,000 dwarf and subgiant stars in TESS southern continuous viewing zone. For almost all the stars, we also present Bayesian estimates of stellar properties including distance, extinction, mass, radius, and age using theoretical isochrones. Stellar surface gravity and radius are made available for an additional set of roughly 8,500 red giants. All our target stars are in the range $10<V<13.1$. Among them, we identify and list 227 stars belonging to the Large Magellanic Cloud. The data were taken using the the High Efficiency and Resolution Multi-Element Spectrograph (HERMES, R $sim 28,000$) at the Anglo-Australian Telescope as part of the TESS-HERMES survey. Comparing our results with the TESS Input Catalog (TIC) shows that the TIC is generally efficient in separating dwarfs and giants, but it has flagged more than hundred cool dwarfs ($T_{rm eff}< 4800$ K) as giants, which ought to be high-priority targets for the exoplanet search. The catalog can be accessed via http://www.physics.usyd.edu.au/tess-hermes/ , or at MAST via https://archive.stsci.edu/prepds/tess-hermes/ .
The Apache Point Observatory Galactic Evolution Experiment (APOGEE) has observed the H-band spectra of over 200 000 stars with $Rsim22 000$. The main motivation for this work is to test an alternative method to the standard APOGEE pipeline (APOGEE St ellar Parameter and Chemical Abundances Pipeline, ASPCAP) to derive parameters in the Near-InfraRed (NIR) for FGK dwarfs. textit{iSpec} and textit{Turbospectrum} are used to generate synthetic spectra matching APOGEE observations and to determine the parameters through $chi^2$ minimization. We present spectroscopic parameters ($T_mathrm{eff}$, $[M/H]$, $log g$, $v_{mic}$) for a sample of 3748 main-sequence and subgiant FGK stars, obtained from their APOGEE H-band spectra We compare our output parameters with the ones obtained with ASPCAP for the same stellar spectra, and find that the values agree within the expected uncertainties. A comparison with the optical samples California Planet Survey, HARPS-GTO (High Accuracy Radial Velocity Planet Searcher - Guaranteed Time Observations), and PASTEL, is also available, and median differences below 10 K for $T_mathrm{eff}$ and 0.2 dex for $[M/H]$ are found. Reasons for these differences are explored. The full H-band line-list, the line selection for the synthesis and the synthesized spectra are available for download, as well as the calculated parameters and their estimated uncertainties.
With the purpose of assessing classic spectroscopic methods on high-resolution and high signal-to-noise ratio spectra in the near-infrared wavelength region, we selected a sample of 65 F-, G-, and K-type stars observed with CARMENES, the new, ultra-s table, double-channel spectrograph at the 3.5 m Calar Alto telescope. We computed their stellar atmospheric parameters ($T_{rm eff}$, $log{g}$, $xi$, and [Fe/H]) by means of the StePar code, a Python implementation of the equivalent width method that employs the 2017 version of the MOOG code and a grid of MARCS model atmospheres. We compiled four Fe I and Fe II line lists suited to metal-rich dwarfs, metal-poor dwarfs, metal-rich giants, and metal-poor giants that cover the wavelength range from 5300 to 17100 angstroms, thus substantially increasing the number of identified Fe I and Fe II lines up to 653 and 23, respectively. We examined the impact of the near-infrared Fe I and Fe II lines upon our parameter determinations after an exhaustive literature search, placing special emphasis on the 14 $Gaia$ benchmark stars contained in our sample. Even though our parameter determinations remain in good agreement with the literature values, the increase in the number of Fe I and Fe II lines when the near-infrared region is taken into account reveals a deeper $T_{rm eff}$ scale that might stem from a higher sensitivity of the near-infrared lines to $T_{rm eff}$.
Asteroseismic parameters allow us to measure the basic stellar properties of field giants observed far across the Galaxy. Most of such determinations are, up to now, based on simple scaling relations involving the large frequency separation, Delta u, and the frequency of maximum power, u$_{max}$. In this work, we implement Delta u and the period spacing, {Delta}P, computed along detailed grids of stellar evolutionary tracks, into stellar isochrones and hence in a Bayesian method of parameter estimation. Tests with synthetic data reveal that masses and ages can be determined with typical precision of 5 and 19 per cent, respectively, provided precise seismic parameters are available. Adding independent information on the stellar luminosity, these values can decrease down to 3 and 10 per cent respectively. The application of these methods to NGC 6819 giants produces a mean age in agreement with those derived from isochrone fitting, and no evidence of systematic differences between RGB and RC stars. The age dispersion of NGC 6819 stars, however, is larger than expected, with at least part of the spread ascribable to stars that underwent mass-transfer events.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا