ﻻ يوجد ملخص باللغة العربية
We present a new method for nanoscale thermal imaging of insulating thin films using atomic force microscopy (AFM). By sweeping the voltage applied to a conducting AFM tip in contact mode, we measure the local current through a VO$_2$ film. We fit the resultant current-voltage curves to a Poole-Frenkel conduction model to extract the local temperature of the film using fundamental constants and known film properties. As the local voltage is further increased, the nanoscale region of VO$_2$ undergoes an insulator-to-metal transition. Immediately preceding the transition, we find the average electric field to be 32 MV/m, and the average local temperature to be at least 335 K, close to the bulk transition temperature of 341 K, indicating that Joule heating contributes to the transition. Our thermometry technique enables local temperature measurement of any film dominated by the Poole-Frenkel conduction mechanism, and provides the opportunity to extend our technique to materials that display other conduction mechanisms.
The insulator-to-metal transition (IMT) of the simple binary compound of vanadium dioxide VO$_2$ at $sim 340$ K has been puzzling since its discovery more than five decades ago. A wide variety of photon and electron probes have been applied in search
We investigate the electronic and structural changes at the nanoscale in vanadium dioxide (VO2) in the vicinity of its thermally driven phase transition. Both electronic and structural changes exhibit phase coexistence leading to percolation. In addi
Strain engineering is a powerful technology which exploits stationary external or internal stress of specific spatial distribution for controlling the fundamental properties of condensed materials and nanostructures. This advanced technique modulates
We discuss the mechanisms behind the electrically driven insulator-metal transition in single crystalline VO$_2$ nanobeams. Our DC and AC transport measurements and the versatile harmonic analysis method employed show that non-uniform Joule heating c
We present a spectroscopic study that reveals that the metal-insulator transition of strained VO$_2$ thin films may be driven towards a purely electronic transition, which does not rely on the Peierls dimerization, by the application of mechanical st