ﻻ يوجد ملخص باللغة العربية
Two-dimensional group-VI transition metal dichalcogenide semiconductors, such as MoS2, WSe2 and others, exhibit strong light-matter coupling and possess direct band gaps in the infrared and visible spectral regimes, making them potentially interesting candidates for various applications in optics and optoelectronics. Here, we review their optical and optoelectronic properties with emphasis on exciton physics and devices. As excitons are tightly bound in these materials and dominate the optical response even at room-temperature, their properties are examined in depth in the first part of this article. We discuss the remarkably versatile excitonic landscape, including bright, dark, localized and interlayer excitons. In the second part, we provide an overview on the progress in optoelectronic device applications, such as electrically driven light emitters, photovoltaic solar cells, photodetectors and opto-valleytronic devices, again bearing in mind the prominent role of excitonic effects. We conclude with a brief discussion on challenges that remain to be addressed to exploit the full potential of transition metal dichalcogenide semiconductors in possible exciton-based applications.
We study theoretically the Coulomb interaction between excitons in transition metal dichalcogenide (TMD) monolayers. We calculate direct and exchange interaction for both ground and excited states of excitons. The screening of the Coulomb interaction
Strain in two-dimensional (2D) transition metal dichalcogenide (TMD) has led to localized states with exciting optical properties, in particular in view of designing one photon sources. The naturally formed of the MoS2 monolayer deposed on hBN substr
Strong many-body interactions in two-dimensional (2D) semiconductors give rise to efficient exciton-exciton annihilation (EEA). This process is expected to result in the generation of unbound high energy carriers. Here, we report an unconventional ph
The direct gap interband transitions in transition metal dichalcogenides monolayers are governed by chiral optical selection rules. Determined by laser helicity, optical transitions in either the $K^+$ or $K^-$ valley in momentum space are induced. L
Auger-like exciton-exciton annihilation (EEA) is considered the key fundamental limitation to quantum yield in devices based on excitons in two-dimensional (2d) materials. Since it is challenging to experimentally disentangle EEA from competing proce