ﻻ يوجد ملخص باللغة العربية
Driven-dissipative systems are expected to give rise to non-equilibrium phenomena that are absent in their equilibrium counterparts. However, phase transitions in these systems generically exhibit an effectively classical equilibrium behavior in spite of their non-equilibrium origin. In this paper, we show that multicritical points in such systems lead to a rich and genuinely non-equilibrium behavior. Specifically, we investigate a driven-dissipative model of interacting bosons that possesses two distinct phase transitions: one from a high- to a low-density phase---reminiscent of a liquid-gas transition---and another to an antiferromagnetic phase. Each phase transition is described by the Ising universality class characterized by an (emergent or microscopic) $mathbb{Z}_2$ symmetry. They, however, coalesce at a multicritical point, giving rise to a non-equilibrium model of coupled Ising-like order parameters described by a $mathbb{Z}_2 times mathbb{Z}_2$ symmetry. Using a dynamical renormalization-group approach, we show that a pair of non-equilibrium fixed points (NEFPs) emerge that govern the long-distance critical behavior of the system. We elucidate various exotic features of these NEFPs. In particular, we show that a generic continuous scale invariance at criticality is reduced to a discrete scale invariance. This further results in complex-valued critical exponents and spiraling phase boundaries, and it is also accompanied by a complex Liouvillian gap even close to the phase transition. As direct evidence of the non-equilibrium nature of the NEFPs, we show that the fluctuation-dissipation relation is violated at all scales, leading to an effective temperature that becomes hotter and hotter at longer and longer wavelengths. Finally, we argue that this non-equilibrium behavior can be observed in cavity arrays with cross-Kerr nonlinearities.
We outline a kinetic theory of non-thermal fixed points for the example of a dilute Bose gas, partially reviewing results obtained earlier, thereby extending, complementing, generalizing and straightening them out. We study universal dynamics after a
Driven by breakthroughs in experimental and theoretical techniques, the study of non-equilibrium quantum physics is a rapidly expanding field with many exciting new developments. Amongst the manifold ways the topic can be investigated, one dimensiona
By means of the discrete truncated Wigner approximation we study dynamical phase transitions arising in the steady state of transverse-field Ising models after a quantum quench. Starting from a fully polarized ferromagnetic initial condition these tr
We investigate formation of Bose-Einstein condensates under non-equilibrium conditions using numerical simulations of the three-dimensional Gross-Pitaevskii equation. For this, we set initial random weakly nonlinear excitations and the forcing at hig
We consider a two-component Bose gas in two dimensions at low temperature with short-range repulsive interaction. In the coexistence phase where both components are superfluid, inter-species interactions induce a nondissipative drag between the two s