ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-equilibrium fixed points of coupled Ising models

115   0   0.0 ( 0 )
 نشر من قبل Jeremy Young
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Driven-dissipative systems are expected to give rise to non-equilibrium phenomena that are absent in their equilibrium counterparts. However, phase transitions in these systems generically exhibit an effectively classical equilibrium behavior in spite of their non-equilibrium origin. In this paper, we show that multicritical points in such systems lead to a rich and genuinely non-equilibrium behavior. Specifically, we investigate a driven-dissipative model of interacting bosons that possesses two distinct phase transitions: one from a high- to a low-density phase---reminiscent of a liquid-gas transition---and another to an antiferromagnetic phase. Each phase transition is described by the Ising universality class characterized by an (emergent or microscopic) $mathbb{Z}_2$ symmetry. They, however, coalesce at a multicritical point, giving rise to a non-equilibrium model of coupled Ising-like order parameters described by a $mathbb{Z}_2 times mathbb{Z}_2$ symmetry. Using a dynamical renormalization-group approach, we show that a pair of non-equilibrium fixed points (NEFPs) emerge that govern the long-distance critical behavior of the system. We elucidate various exotic features of these NEFPs. In particular, we show that a generic continuous scale invariance at criticality is reduced to a discrete scale invariance. This further results in complex-valued critical exponents and spiraling phase boundaries, and it is also accompanied by a complex Liouvillian gap even close to the phase transition. As direct evidence of the non-equilibrium nature of the NEFPs, we show that the fluctuation-dissipation relation is violated at all scales, leading to an effective temperature that becomes hotter and hotter at longer and longer wavelengths. Finally, we argue that this non-equilibrium behavior can be observed in cavity arrays with cross-Kerr nonlinearities.



قيم البحث

اقرأ أيضاً

We outline a kinetic theory of non-thermal fixed points for the example of a dilute Bose gas, partially reviewing results obtained earlier, thereby extending, complementing, generalizing and straightening them out. We study universal dynamics after a cooling quench, focusing on situations where the time evolution represents a pure rescaling of spatial correlations, with time defining the scale parameter. The non-equilibrium initial condition set by the quench induces a redistribution of particles in momentum space. Depending on conservation laws, this can take the form of a wave-turbulent flux or of a more general self-similar evolution, signaling the critically slowed approach to a non-thermal fixed point. We identify such fixed points using a non-perturbative kinetic theory of collective scattering between highly occupied long-wavelength modes. In contrast, a wave-turbulent flux, possible in the perturbative Boltzmann regime, builds up in a critically accelerated self-similar manner. A key result is the simple analytical universal scaling form of the non-perturbative many-body scattering matrix, for which we lay out the concrete conditions under which it applies. We derive the scaling exponents for the time evolution as well as for the power-law tail of the momentum distribution function, for a general dynamical critical exponent $z$ and an anomalous scaling dimension $eta$. The approach of the non-thermal fixed point is, in particular, found to involve a rescaling of momenta in time $t$ by $t^{beta}$, with $beta=1/z$, within our kinetic approach independent of $eta$. We confirm our analytical predictions by numerically evaluating the kinetic scattering integral as well as the non-perturbative many-body coupling function. As a side result we obtain a possible finite-size interpretation of wave-turbulent scaling recently measured by Navon et al.
Driven by breakthroughs in experimental and theoretical techniques, the study of non-equilibrium quantum physics is a rapidly expanding field with many exciting new developments. Amongst the manifold ways the topic can be investigated, one dimensiona l system provide a particularly fine platform. The trifecta of strongly correlated physics, powerful theoretical techniques and experimental viability have resulted in a flurry of research activity over the last decade or so. In this review we explore the non equilibrium aspects of one dimensional systems which are integrable. Through a number of illustrative examples we discuss non equilibrium phenomena which arise in such models, the role played by integrability and the consequences these have for more generic systems.
By means of the discrete truncated Wigner approximation we study dynamical phase transitions arising in the steady state of transverse-field Ising models after a quantum quench. Starting from a fully polarized ferromagnetic initial condition these tr ansitions separate a phase with nonvanishing magnetization along the ordering direction from a symmetric phase upon increasing the transverse field. We consider two paradigmatic cases, a one-dimensional long-range model with power-law interactions $propto 1/r^{alpha}$ decaying algebraically as a function of distance $r$ and a two-dimensional system with short-range nearest-neighbour interactions. In the former case we identify dynamical phase transitions for $alpha lesssim 2$ and we extract the critical exponents from a data collapse of the steady state magnetization for up to 1200 lattice sites. We find identical exponents for $alpha lesssim 0.5$, suggesting that the dynamical transitions in this regime fall into the same universality class as the nonergodic mean-field limit. The two-dimensional Ising model is believed to be thermalizing, which we also confirm using exact diagonalization for small system sizes. Thus, the dynamical transition is expected to correspond to the thermal phase transition, which is consistent with our data upon comparing to equilibrium quantum Monte-Carlo simulations. We further test the accuracy of the discrete truncated Wigner approximation by comparing against numerically exact methods such as exact diagonalization, tensor network as well as artificial neural network states and we find good quantitative agreement on the accessible time scales. Finally, our work provides an additional contribution to the understanding of the range and the limitations of qualitative and quantitative applicability of the discrete truncated Wigner approximation.
We investigate formation of Bose-Einstein condensates under non-equilibrium conditions using numerical simulations of the three-dimensional Gross-Pitaevskii equation. For this, we set initial random weakly nonlinear excitations and the forcing at hig h wave numbers, and study propagation of the turbulent spectrum toward the low wave numbers. Our primary goal is to compare the results for the evolving spectrum with the previous results obtained for the kinetic equation of weak wave turbulence. We demonstrate existence of a regime for which good agreement with the wave turbulence results is found in terms of the main features of the previously discussed self-similar solution. In particular, we find a reasonable agreement with the low-frequency and the high-frequency power-law asymptotics of the evolving solution, including the anomalous power-law exponent $x^* approx 1.24$ for the three-dimensional waveaction spectrum. We also study the regimes of very weak turbulence, when the evolution is affected by the discreteness of the Fourier space, and the strong turbulence regime when emerging condensate modifies the wave dynamics and leads to formation of strongly nonlinear filamentary vortices.
We consider a two-component Bose gas in two dimensions at low temperature with short-range repulsive interaction. In the coexistence phase where both components are superfluid, inter-species interactions induce a nondissipative drag between the two s uperfluid flows (Andreev-Bashkin effect). We show that this behavior leads to a modification of the usual Berezinskii-Kosterlitz-Thouless (BKT) transition in two dimensions. We extend the renormalization of the superfluid densities at finite temperature using the renormalization group approach and find that the vortices of one component have a large influence on the superfluid properties of the other, mediated by the nondissipative drag. The extended BKT flow equations indicate that the occurrence of the vortex unbinding transition in one of the components can induce the breakdown of superfluidity also in the other, leading to a locking phenomenon for the critical temperatures of the two gases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا