ﻻ يوجد ملخص باللغة العربية
In this paper we investigate CP violation in charged decays of $D$ meson. Particularly, we study the direct CP asymmetry of the Cabibbo favored non-leptonic $D^+ rightarrow bar K^0 pi^+$ and the doubly Cabibbo-suppressed decay mode $D^+ rightarrow K^0 pi^+$ within standard model, two Higgs doublet model with generic Yukawa structure and left right symmetric models. In the standard model, we first derive the contributions from box and di-penguin diagrams contributing to their amplitudes which are relevant to the generation of the weak phases essential for non-vanishing direct CP violation. Then, we show that these phases are so tiny leading to a direct CP asymmetry of order $10^{-11}$ in both decay modes. Regarding the two Higgs doublet model with generic Yukawa structure and after taking into account all constraints on the parameter space of the model, we show that the enhanced direct CP asymmetries can be 6 and 7 orders of magnitudes larger than the standard model prediction for $D^+ rightarrow bar K^0 pi^+$ and $D^+ rightarrow K^0 pi^+$ respectively. Finally, within left right symmetric models, we find that sizable direct CP asymmetry of ${mathcal O } (10^{-3})$ can be obtained for the decay mode $D^+ rightarrow bar K^0 pi^+$ after respecting all relevant constraints.
In this paper we study the direct CP asymmetry of the doubly Cabibbo-suppressed decay mode $D^0 to K^+ pi^- $ within standard model and two Higgs doublet model with generic Yukawa structure. In the standard model we derive the corrections to the tree
A search for time-dependent violation of the charge-parity symmetry in $D^0 to K^+ K^-$ and $D^0 to pi^+ pi^-$ decays is performed at the LHCb experiment using proton-proton collision data recorded from 2015 to 2018 at a centre-of-mass energy of 13 T
In this paper, we study the Cabibbo favored non-leptonic $D^0$ decays into $K^- pi^+$ decays. First we show that, within the Standard Model, the corresponding CP asymmetry is strongly suppressed and out of the experimental range even taking into acco
Simulation studies are performed to assess the sensitivity of a model-independent analysis of the flavour-tagged decays $D^0 to K^0_{rm S}pi^+pi^-$ and $D^0 to K^0_{rm S}K^+K^-$ to mixing and CP violation. The analysis takes as input measurements of
The great progress made recently in the sector of Flavor Physics has enabled to establish CP violation in the B-meson decays. The unitarity triangle derived from the unitarity relation $V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0$ has bee