ﻻ يوجد ملخص باللغة العربية
The astrophysical S-factor for the direct $ alpha(d,gamma)^{6}{rm Li}$ capture reaction is calculated in a three-body model based on the hyperspherical Lagrange-mesh method. A sensitivity of the E1 and E2 astrophysical S-factors to the orthogonalization method of Pauli forbidden states in the three-body system is studied. It is found that the method of orthogonalising pseudopotentials (OPP) yields larger isotriplet ($T=1$) components than the supersymmetric transformation (SUSY) procedure. The E1 astrophysical S-factor shows the same energy dependence in both cases, but strongly different absolute values. At the same time, the E2 S-factor does not depend on the orthogonalization procedure. As a result, the OPP method yields a very good description of the direct data of the LUNA collaboration at low energies, while the SUSY transformation strongly underestimates the LUNA data. keywords{three-body model; orthogonalization method; astrophysical S factor.
At the long-wavelength approximation, electric dipole transitions are forbidden between isospin-zero states. In an $alpha+n+p$ model with $T = 1$ contributions, the $alpha(d,gamma)^6$Li astrophysical $S$-factor is in agreement with the experimental d
The astrophysical capture process $alpha+d$ $rightarrow$ $^6$Li + $gamma$ is studied in a three-body model. The initial state is factorized into the deuteron bound state and the $alpha+d$ scattering state. The final nucleus $^6$Li(1+) is described
The astrophysical S-factor and reaction rate of the direct capture process $alpha+d$ $rightarrow$ $^6$Li + $gamma$, as well as the abundance of the $^6$Li element are estimated in a three-body model. The initial state is factorized into the deuteron
A comparative analysis of the astrophysical S factor and the reaction rate for the direct $ alpha(d,gamma)^{6}{rm Li}$ capture reaction, and the primordial abundance of the $^6$Li element, resulting from two-body, three-body and combined cluster mode
Theoretical estimations for the astrophysical S-factor and the d(alpha,gamma)6Li reaction rates are obtained on the base of the two-body model with the alpha-d potential of a simple Gaussian form, which describes correctly the phase-shifts in the S-,