ﻻ يوجد ملخص باللغة العربية
The mass spectra and wave functions for the doubly heavy baryons are computed under the picture that the two heavy quarks inside a doubly heavy baryon, such as two $c$-quarks in $Xi_{cc}$, combine into a heavy `diquark core in color anti-triplet firstly, then the diquark core turns into a color-less doubly heavy baryon via combining the light $q$-quark inside the baryon. Namely both of the combinations, the two heavy quarks inside the baryon into a diquark core in color anti-triplet and the heavy diquark core with the light quark into the baryon, are depicted by relativistic Bethe-Salpeter equations (BSEs) with an accordingly QCD inspired kernel respectively, although in the paper only the heavy diquark cores with the quantum numbers $J^P=1^+$ are considered. Since the `second combination is of the heavy diquark core and the light quark, so the structure effect of the diquark core to the relevant kernel of the BSE is specially considered in terms of the diquark-core wave functions. The mass spectra and wave functions for the `low-laying doubly heavy baryons in the flavors $(ccq)$, $(bcq)$ and $(bbq)$ and in the quantum numbers $J^P=frac{1}{2}^+$, $J^P=frac{3}{2}^+$, achieved by solving the equations under the so-called instantaneous approximation, are presented properly and some comparisons with the others results under different approaches in the literature are made.
We construct a leading-order effective field theory for both scalar and axial-vector heavy diquarks, and consider its power expansion in the heavy diquark limit. By assuming the transition from QCD to diquark effective theory, we derive the most gene
The excitation energy spectra are investigated by using diquark models in order to discuss the possibility of the existence of the diquark as a constituent of the single heavy baryons. We consider two diquark models in which the diquark is treated as
The radiative decays of the p-wave charmed heavy baryons to the ground state baryon states are studied in the framework of the light cone QCD sum rules method. Firstly, the transition form factors that describe these transitions are estimated, and th
Baryons with one or more heavy quarks have been shown, in the context of a nonrelativistic description, to exhibit mass inequalities under permutations of their quarks, when spin averages are taken. These inequalities sometimes are invalidated when s
In this paper we present in greater detail previous work on the Born-Oppenheimer approximation to treat the hydrogen bond of QCD, and add a similar treatment of doubly heavy baryons. Doubly heavy exotic resonances X and Z can be described as color mo