ﻻ يوجد ملخص باللغة العربية
Techniques developed for device-independent characterizations allow one to certify certain physical properties of quantum systems without assuming any knowledge of their internal workings. Such a certification, however, often relies on the employment of device-independent witnesses catered for the particular property of interest. In this work, we consider a one-parameter family of multipartite, two-setting, two-outcome Bell inequalities and demonstrate the extent to which they are suited for the device-independent certification of genuine many-body entanglement (and hence the entanglement depth) present in certain well-known multipartite quantum states, including the generalized Greenberger-Horne-Zeilinger (GHZ) states with unbalanced weights, the higher-dimensional generalizations of balanced GHZ states, and the $W$ states. As a by-product of our investigations, we have found that, in contrast with well-established results, provided trivial qubit measurements are allowed, full-correlation Bell inequalities can also be used to demonstrate the nonlocality of weakly entangled unbalanced-weight GHZ states. Besides, we also demonstrate how two-setting, two-outcome Bell inequalities can be constructed, based on the so-called GHZ paradox, to witness the entanglement depth of various graph states, including the ring graph states, the fully connected graph states, and some linear graph states, etc.
We present a simple family of Bell inequalities applicable to a scenario involving arbitrarily many parties, each of which performs two binary-outcome measurements. We show that these inequalities are members of the complete set of full-correlation B
Genuine multipartite entanglement represents the strongest type of entanglement, which is an essential resource for quantum information processing. Standard methods to detect genuine multipartite entanglement, e.g., entanglement witnesses, state tomo
We consider the problem of demonstrating non-Bell-local correlations by performing local measurements in randomly chosen triads, i.e., three mutually unbiased bases, on a multipartite Greenberger-Horne-Zeilinger state. Our main interest lies on inves
We consider the problem of determining whether genuine multipartite entanglement was produced in an experiment, without relying on a characterization of the systems observed or of the measurements performed. We present an n-partite inequality that is
D{u}r [Phys. Rev. Lett. {bf 87}, 230402 (2001)] constructed $N$-qubit bound entangled states which violate a Bell inequality for $Nge 8$, and his result was recently improved by showing that there exists an $N$-qubit bound entangled state violating t