ﻻ يوجد ملخص باللغة العربية
There have been recent efforts for incorporating Graph Neural Network models for learning full-stack solvers for constraint satisfaction problems (CSP) and particularly Boolean satisfiability (SAT). Despite the unique representational power of these neural embedding models, it is not clear how the search strategy in the learned models actually works. On the other hand, by fixing the search strategy (e.g. greedy search), we would effectively deprive the neural models of learning better strategies than those given. In this paper, we propose a generic neural framework for learning CSP solvers that can be described in terms of probabilistic inference and yet learn search strategies beyond greedy search. Our framework is based on the idea of propagation, decimation and prediction (and hence the name PDP) in graphical models, and can be trained directly toward solving CSP in a fully unsupervised manner via energy minimization, as shown in the paper. Our experimental results demonstrate the effectiveness of our framework for SAT solving compared to both neural and the state-of-the-art baselines.
This paper presents a general mean-field game (GMFG) framework for simultaneous learning and decision-making in stochastic games with a large population. It first establishes the existence of a unique Nash Equilibrium to this GMFG, and demonstrates t
Structural decomposition methods have been developed for identifying tractable classes of instances of fundamental problems in databases, such as conjunctive queries and query containment, of the constraint satisfaction problem in artificial intellig
Promise Constraint Satisfaction Problems (PCSP) were proposed recently by Brakensiek and Guruswami arXiv:1704.01937 as a framework to study approximations for Constraint Satisfaction Problems (CSP). Informally a PCSP asks to distinguish between wheth
Restricted Boltzmann machines (RBMs) are energy-based neural-networks which are commonly used as the building blocks for deep architectures neural architectures. In this work, we derive a deterministic framework for the training, evaluation, and use
In many applications, there is a need to predict the effect of an intervention on different individuals from data. For example, which customers are persuadable by a product promotion? which patients should be treated with a certain type of treatment?