ترغب بنشر مسار تعليمي؟ اضغط هنا

PDP: A General Neural Framework for Learning Constraint Satisfaction Solvers

58   0   0.0 ( 0 )
 نشر من قبل Saeed Amizadeh
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

There have been recent efforts for incorporating Graph Neural Network models for learning full-stack solvers for constraint satisfaction problems (CSP) and particularly Boolean satisfiability (SAT). Despite the unique representational power of these neural embedding models, it is not clear how the search strategy in the learned models actually works. On the other hand, by fixing the search strategy (e.g. greedy search), we would effectively deprive the neural models of learning better strategies than those given. In this paper, we propose a generic neural framework for learning CSP solvers that can be described in terms of probabilistic inference and yet learn search strategies beyond greedy search. Our framework is based on the idea of propagation, decimation and prediction (and hence the name PDP) in graphical models, and can be trained directly toward solving CSP in a fully unsupervised manner via energy minimization, as shown in the paper. Our experimental results demonstrate the effectiveness of our framework for SAT solving compared to both neural and the state-of-the-art baselines.



قيم البحث

اقرأ أيضاً

150 - Xin Guo , Anran Hu , Renyuan Xu 2020
This paper presents a general mean-field game (GMFG) framework for simultaneous learning and decision-making in stochastic games with a large population. It first establishes the existence of a unique Nash Equilibrium to this GMFG, and demonstrates t hat naively combining Q-learning with the fixed-point approach in classical MFGs yields unstable algorithms. It then proposes value-based and policy-based reinforcement learning algorithms (GMF-P and GMF-P respectively) with smoothed policies, with analysis of convergence property and computational complexity. The experiments on repeated Ad auction problems demonstrate that GMF-V-Q, a specific GMF-V algorithm based on Q-learning, is efficient and robust in terms of convergence and learning accuracy. Moreover, its performance is superior in convergence, stability, and learning ability, when compared with existing algorithms for multi-agent reinforcement learning.
Structural decomposition methods have been developed for identifying tractable classes of instances of fundamental problems in databases, such as conjunctive queries and query containment, of the constraint satisfaction problem in artificial intellig ence, or more generally of the homomorphism problem over relational structures. Most structural decomposition methods can be characterized through hypergraph games that are variations of the Robber and Cops graph game that characterizes the notion of treewidth. In particular, decomposition trees somehow correspond to monotone winning strategies, where the escape space of the robber on the hypergraph is shrunk monotonically by the cops. In fact, unlike the treewidth case, there are hypergraphs where monotonic strategies do not exist, while the robber can be captured by means of more complex non-monotonic strategies. However, these powerful strategies do not correspond in general to valid decompositions. The paper provides a general way to exploit the power of non-monotonic strategies, by allowing a disciplined form of non-monotonicity, characteristic of cops playing in a greedy way. It is shown that deciding the existence of a (non-monotone) greedy winning strategy (and compute one, if any) is tractable. Moreover, despite their non-monotonicity, such strategies always induce valid decomposition trees, which can be computed efficiently based on them. As a consequence, greedy strategies allow us to define new islands of tractability for the considered problems properly including all previously known classes of tractable instances.
Promise Constraint Satisfaction Problems (PCSP) were proposed recently by Brakensiek and Guruswami arXiv:1704.01937 as a framework to study approximations for Constraint Satisfaction Problems (CSP). Informally a PCSP asks to distinguish between wheth er a given instance of a CSP has a solution or not even a specified relaxation can be satisfied. All currently known tractable PCSPs can be reduced in a natural way to tractable CSPs. Barto arXiv:1909.04878 presented an example of a PCSP over Boolean structures for which this reduction requires solving a CSP over an infinite structure. We give a first example of a PCSP over Boolean structures which reduces to a tractable CSP over a structure of size $3$ but not smaller. Further we investigate properties of PCSPs that reduce to systems of linear equations or to CSPs over structures with semilattice or majority polymorphism.
Restricted Boltzmann machines (RBMs) are energy-based neural-networks which are commonly used as the building blocks for deep architectures neural architectures. In this work, we derive a deterministic framework for the training, evaluation, and use of RBMs based upon the Thouless-Anderson-Palmer (TAP) mean-field approximation of widely-connected systems with weak interactions coming from spin-glass theory. While the TAP approach has been extensively studied for fully-visible binary spin systems, our construction is generalized to latent-variable models, as well as to arbitrarily distributed real-valued spin systems with bounded support. In our numerical experiments, we demonstrate the effective deterministic training of our proposed models and are able to show interesting features of unsupervised learning which could not be directly observed with sampling. Additionally, we demonstrate how to utilize our TAP-based framework for leveraging trained RBMs as joint priors in denoising problems.
In many applications, there is a need to predict the effect of an intervention on different individuals from data. For example, which customers are persuadable by a product promotion? which patients should be treated with a certain type of treatment? These are typical causal questions involving the effect or the change in outcomes made by an intervention. The questions cannot be answered with traditional classification methods as they only use associations to predict outcomes. For personalised marketing, these questions are often answered with uplift modelling. The objective of uplift modelling is to estimate causal effect, but its literature does not discuss when the uplift represents causal effect. Causal heterogeneity modelling can solve the problem, but its assumption of unconfoundedness is untestable in data. So practitioners need guidelines in their applications when using the methods. In this paper, we use causal classification for a set of personalised decision making problems, and differentiate it from classification. We discuss the conditions when causal classification can be resolved by uplift (and causal heterogeneity) modelling methods. We also propose a general framework for causal classification, by using off-the-shelf supervised methods for flexible implementations. Experiments have shown two instantiations of the framework work for causal classification and for uplift (causal heterogeneity) modelling, and are competitive with the other uplift (causal heterogeneity) modelling methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا