ترغب بنشر مسار تعليمي؟ اضغط هنا

In situ spacecraft observations of a structured electron diffusion region during magnetopause reconnection

143   0   0.0 ( 0 )
 نشر من قبل Giulia Cozzani
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Electron Diffusion Region (EDR) is the region where magnetic reconnection is initiated and electrons are energized. Because of experimental difficulties, the structure of the EDR is still poorly understood. A key question is whether the EDR has a homogeneous or patchy structure. Here we report Magnetospheric MultiScale (MMS) novel spacecraft observations providing evidence of inhomogeneous current densities and energy conversion over a few electron inertial lengths within an EDR at the terrestrial magnetopause, suggesting that the EDR can be rather structured. These inhomogenenities are revealed through multi-point measurements because the spacecraft separation is comparable to a few electron inertial lengths, allowing the entire MMS tetrahedron to be within the EDR most of the time. These observations are consistent with recent high-resolution and low-noise kinetic simulations.



قيم البحث

اقرأ أيضاً

We report in situ observations of an electron diffusion region (EDR) and adjacent separatrix region. We observe significant magnetic field oscillations near the lower hybrid frequency which propagate perpendicularly to the reconnection plane. We also find that the strong electron-scale gradients close to the EDR exhibit significant oscillations at a similar frequency. Such oscillations are not expected for a crossing of a steady 2D EDR, and can be explained by a complex motion of the reconnection plane induced by current sheet kinking propagating in the out-of-reconnection-plane direction. Thus all three spatial dimensions have to be taken into account to explain the observed perturbed EDR crossing.
Magnetospheric Multiscale (MMS) encountered the primary low-latitude magnetopause reconnection site when the inter-spacecraft separation exceeded the upstream ion inertial length. Classical signatures of the ion diffusion region (IDR), including a su b-ion-Alfvenic de-magnetized ion exhaust, a super-ion-Alfvenic magnetized electron exhaust, and Hall electromagnetic fields, are identified. The opening angle between the magnetopause and magnetospheric separatrix is $30^circpm5^circ$. The exhaust preferentially expands sunward, displacing the magnetosheath. Intense pileup of reconnected magnetic flux occurs between the magnetosheath separatrix and the magnetopause in a narrow channel intermediate between the ion and electron scales. The strength of the pileup (normalized values of 0.3-0.5) is consistent with the large angle at which the magnetopause is inclined relative to the overall reconnection coordinates. MMS-4, which was two ion inertial lengths closer to the X-line than the other three spacecraft, observed intense electron-dominated currents and kinetic-to-electromagnetic-field energy conversion within the pileup. MMS-1, 2, and 3 did not observe the intense currents nor the particle-to-field energy conversion but did observe the pileup, indicating that the edge of the generation region was contained within the tetrahedron. Comparisons with particle-in-cell simulations reveal that the electron currents and large inclination angle of the magnetopause are interconnected features of the asymmetric Hall effect. Between the separatrix and the magnetopause, high-density inflowing magnetosheath electrons brake and turn into the outflow direction, imparting energy to the normal magnetic field and generating the pileup. The findings indicate that electron dynamics are likely an important influence on the magnetic field structure within the ion diffusion region.
57 - J. Egedal , A. Le , W. Daughton 2016
Supported by a kinetic simulation, we derive an exclusion energy parameter $cal{E}_X$ providing a lower kinetic energy bound for an electron to cross from one inflow region to the other during magnetic reconnection. As by a Maxwell Demon, only high e nergy electrons are permitted to cross the inner reconnection region, setting the electron distribution function observed along the low density side separatrix during asymmetric reconnection. The analytic model accounts for the two distinct flavors of crescent-shaped electron distributions observed by spacecraft in a thin boundary layer along the low density separatrix.
Magnetic reconnection is an energy conversion process important in many astrophysical contexts including the Earths magnetosphere, where the process can be investigated in-situ. Here we present the first encounter of a reconnection site by NASAs Magn etospheric Multiscale (MMS) spacecraft in the magnetotail, where reconnection involves symmetric inflow conditions. The unprecedented electron-scale plasma measurements revealed (1) super-Alfvenic electron jets reaching 20,000 km/s, (2) electron meandering motion and acceleration by the electric field, producing multiple crescent-shaped structures, (3) spatial dimensions of the electron diffusion region implying a reconnection rate of 0.1-0.2. The well-structured multiple layers of electron populations indicate that, despite the presence of turbulence near the reconnection site, the key electron dynamics appears to be largely laminar.
We have used the high-resolution data of the Magnetospheric Multiscale (MMS) mission dayside phase to identify twenty-one previously unreported encounters with the electron diffusion region (EDR), as evidenced by electron agyrotropy, ion jet reversal s, and j dot E greater than 0. Three of the new EDR encounters, which occurred within a one-minute-long interval on November 23rd, 2016, are analyzed in detail. These events, which resulted from a relatively low and oscillating magnetopause velocity, contained large electric fields (several tens to hundreds of milliVolts per meter), crescent-shaped electron velocity phase space densities, large currents (greater than 2 microAmperes per square meter), and Ohmic heating of the plasma (near or exceeding 10 nanoWatts per cubic meter). Because of the slow in-and-out motion of the magnetopause, two of these events show the unprecedented mixture of perpendicular and parallel crescents, indicating the first breaking and reconnecting of solar wind and magnetospheric field lines. An extended list of thirty-two EDR or near-EDR events is also included, and demonstrates a wide variety of observed plasma behavior inside and surrounding the reconnection site.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا