ﻻ يوجد ملخص باللغة العربية
The young pulsar PSR B1828-11 has long been known to show correlated shape and spin-down changes with timescales of roughly 500 and 250 days, perhaps associated with large-scale magnetospheric switching. Here we present multi-hour observations with the Parkes and Green Bank Telescopes at multiple phases across the roughly 500-day cycle and show that the pulsar undergoes mode-changing between two stable, extreme profile states. The fraction of time spent in each profile state naturally accounts for the observed overall shape parameter (defined to be 0 for wide profiles and 1 for narrow ones); this and the variable rate of the mode transitions are directly related to the spin-down changes. We observe that the mode transition rate could plausibly function as an additional parameter governing the chaotic behaviour in this object which was proposed earlier by Seymour and Lorimer. Free precession is not needed to account for the variations.
PSR B1828-11 is a young pulsar once thought to be undergoing free precession and recently found instead to be switching magnetospheric states in tandem with spin-down changes. Here we show the two extreme states of the mode-changing found for this pulsar and comment briefly on its interpretation.
Stairs, Lyne & Shemar have found that arrival time residuals from PSR B1828-11 vary periodically with a period of 500 days. This behavior can be accounted for by precession of the radiopulsar, an interpretation that is reinforced by the detection of
This paper reports on polarimetric radiation properties based on the switching modes of normal PSR B2020+28 by analysing the data acquired from the Nanshan 25-m radio telescope at 1556 MHz. With nearly 8 hours quasi-continuous observation, the data p
New simultaneous X-ray and radio observations of the archetypal mode-switching pulsar PSR B0943+10 have been carried out with XMM-Newton and the LOFAR, LWA and Arecibo radio telescopes in November 2014. They allowed us to better constrain the X-ray s
Observations obtained in the last years challenged the widespread notion that rotation-powered neutron stars are steady X-ray emitters. Besides a few allegedly rotation-powered neutron stars that showed magnetar-like variability, a particularly inter