ترغب بنشر مسار تعليمي؟ اضغط هنا

Modules for Experiments in Stellar Astrophysics (MESA): Pulsating Variable Stars, Rotation, Convective Boundaries, and Energy Conservation

105   0   0.0 ( 0 )
 نشر من قبل Josiah Schwab
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We update the capabilities of the open-knowledge software instrument Modules for Experiments in Stellar Astrophysics (MESA). RSP is a new functionality in MESAstar that models the non-linear radial stellar pulsations that characterize RR Lyrae, Cepheids, and other classes of variable stars. We significantly enhance numerical energy conservation capabilities, including during mass changes. For example, this enables calculations through the He flash that conserve energy to better than 0.001 %. To improve the modeling of rotating stars in MESA, we introduce a new approach to modifying the pressure and temperature equations of stellar structure, and a formulation of the projection effects of gravity darkening. A new scheme for tracking convective boundaries yields reliable values of the convective-core mass, and allows the natural emergence of adiabatic semiconvection regions during both core hydrogen- and helium-burning phases. We quantify the parallel performance of MESA on current generation multicore architectures and demonstrate improvements in the computational efficiency of radiative levitation. We report updates to the equation of state and nuclear reaction physics modules. We briefly discuss the current treatment of fallback in core-collapse supernova models and the thermodynamic evolution of supernova explosions. We close by discussing the new MESA Testhub software infrastructure to enhance source-code development.



قيم البحث

اقرأ أيضاً

We substantially update the capabilities of the open source software package Modules for Experiments in Stellar Astrophysics (MESA), and its one-dimensional stellar evolution module, MESA Star. Improvements in MESA Stars ability to model the evolutio n of giant planets now extends its applicability down to masses as low as one-tenth that of Jupiter. The dramatic improvement in asteroseismology enabled by the space-based Kepler and CoRoT missions motivates our full coupling of the ADIPLS adiabatic pulsation code with MESA Star. This also motivates a numerical recasting of the Ledoux criterion that is more easily implemented when many nuclei are present at non-negligible abundances. This impacts the way in which MESA Star calculates semi-convective and thermohaline mixing. We exhibit the evolution of 3-8 Msun stars through the end of core He burning, the onset of He thermal pulses, and arrival on the white dwarf cooling sequence. We implement diffusion of angular momentum and chemical abundances that enable calculations of rotating-star models, which we compare thoroughly with earlier work. We introduce a new treatment of radiation-dominated envelopes that allows the uninterrupted evolution of massive stars to core collapse. This enables the generation of new sets of supernovae, long gamma-ray burst, and pair-instability progenitor models. We substantially modify the way in which MESA Star solves the fully coupled stellar structure and composition equations, and we show how this has improved MESAs performance scaling on multi-core processors. Updates to the modules for equation of state, opacity, nuclear reaction rates, and atmospheric boundary conditions are also provided. We describe the MESA Software Development Kit (SDK) that packages all the required components needed to form a unified and maintained build environment for MESA. [Abridged]
205 - Matthew Browning 2010
Stars of sufficiently low mass are convective throughout their interiors, and so do not possess an internal boundary layer akin to the solar tachocline. Because that interface figures so prominently in many theories of the solar magnetic dynamo, a wi despread expectation had been that fully convective stars would exhibit surface magnetic behavior very different from that realized in more massive stars. Here I describe how recent observations and theoretical models of dynamo action in low-mass stars are partly confirming, and partly confounding, this basic expectation. In particular, I present the results of 3--D MHD simulations of dynamo action by convection in rotating spherical shells that approximate the interiors of 0.3 solar-mass stars at a range of rotation rates. The simulated stars can establish latitudinal differential rotation at their surfaces which is solar-like at ``rapid rotation rates (defined within) and anti-solar at slower rotation rates; the differential rotation is greatly reduced by feedback from strong dynamo-generated magnetic fields in some parameter regimes. I argue that this ``flip in the sense of differential rotation may be observable in the near future. I also briefly describe how the strength and morphology of the magnetic fields varies with the rotation rate of the simulated star, and show that the maximum magnetic energies attained are compatible with simple scaling arguments.
Seismology of stars is strongly developing. To address this question we have formed an international collaboration OPAC to perform specific experimental measurements, compare opacity calculations and improve the opacity calculations in the stellar co des [1]. We consider the following opacity codes: SCO, CASSANDRA, STA, OPAS, LEDCOP, OP, SCO-RCG. Their comparison has shown large differences for Fe and Ni in equivalent conditions of envelopes of type II supernova precursors, temperatures between 15 and 40 eV and densities of a few mg/cm3 [2, 3, 4]. LEDCOP, OPAS, SCO-RCG structure codes and STA give similar results and differ from OP ones for the lower temperatures and for spectral interval values [3]. In this work we discuss the role of Configuration Interaction (CI) and the influence of the number of used configurations. We present and include in the opacity code comparisons new HULLAC-v9 calculations [5, 6] that include full CI. To illustrate the importance of this effect we compare different CI approximations (modes) available in HULLAC-v9 [7]. These results are compared to previous predictions and to experimental data. Differences with OP results are discussed.
Classical Cepheids are powerful probes of both stellar evolution and near-field cosmology thanks to their high luminosities, pulsations, and that they follow the Leavitt (Period-Luminosity) Law. However, there still exist a number of questions regard ing their evolution, such as the role of rotation, convective core overshooting and winds. ln particular, how do these processes impact Cepheid evolution and the predicted fundamental properties such as stellar mass. In this work, we compare a sample of period change that are real-time observations of stellar evolution with new evolution models to test the impact of these first two processes. In our previous study we found that enhanced mass loss is crucial for describing the sample, and here we continue that analysis but for rotational mixing and core overshooting. We show that, while rotation is important for stellar evolution studies, rotation, itself, is insufficient to model the distribution of period change rates from the observed sample. On the other hand, convective core overshooting is needed to explain the magnitude of the rates of period change, but does not explain the number of stars with positive and negative period change rates. In conclusion, we determine that convective core overshooting and stellar rotation alone are not enough to account for the observed distribution of Cepheid rates of period change and another mechanism, such as pulsation-driven mass-loss, may be required.
Kepler ultra-high precision photometry of long and continuous observations provides a unique dataset in which surface rotation and variability can be studied for thousands of stars. Because many of these old field stars also have independently measur ed asteroseismic ages, measurements of rotation and activity are particularly interesting in the context of age-rotation-activity relations. In particular, age-rotation relations generally lack good calibrators at old ages, a problem that this Kepler sample of old-field stars is uniquely suited to address. We study the surface rotation and photometric magnetic activity of a subset of 540 solar-like stars on the main- sequence and the subgiant branch for which stellar pulsations have been measured. The rotation period was determined by comparing the results from two different analysis methods: i) the projection onto the frequency domain of the time-period analysis, and ii) the autocorrelation function (ACF) of the light curves. Reliable surface rotation rates were then extracted by comparing the results from two different sets of calibrated data and from the two complementary analyses. We report rotation periods for 310 out of 540 targets (excluding known binaries and candidate planet-host stars); our measurements span a range of 1 to 100 days. The photometric magnetic activity levels of these stars were computed, and for 61.5% of the dwarfs, this level is similar to the range, from minimum to maximum, of the solar magnetic activity. We demonstrate that hot dwarfs, cool dwarfs, and subgiants have very different rotation-age relationships, highlighting the importance of separating out distinct populations when interpreting stellar rotation periods. Our sample of cool dwarf stars with age and metallicity data of the highest quality is consistent with gyrochronology relations reported in the literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا