ترغب بنشر مسار تعليمي؟ اضغط هنا

Persistent Quasi-Periodic Pulsations During a Large X-Class Solar Flare

79   0   0.0 ( 0 )
 نشر من قبل Laura. A Hayes B.A.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Solar flares often display pulsating and oscillatory signatures in the emission, known as quasi-periodic pulsations (QPP). QPP are typically identified during the impulsive phase of flares, yet in some cases, their presence is detected late into the decay phase. Here, we report extensive fine structure QPP that are detected throughout the large X8.2 flare from 2017 September 10. Following the analysis of the thermal pulsations observed in the GOES/XRS and the 131 A channel of SDO/AIA, we find a pulsation period of ~65 s during the impulsive phase followed by lower amplitude QPP with a period of ~150 s in the decay phase, up to three hours after the peak of the flare. We find that during the time of the impulsive QPP, the soft X-ray source observed with RHESSI rapidly rises at a velocity of approximately 17 km/s following the plasmoid/coronal mass ejection (CME) eruption. We interpret these QPP in terms of a manifestation of the reconnection dynamics in the eruptive event. During the long-duration decay phase lasting several hours, extended downward contractions of collapsing loops/plasmoids that reach the top of the flare arcade are observed in EUV. We note that the existence of persistent QPP into the decay phase of this flare are most likely related to these features. The QPP during this phase are discussed in terms of MHD wave modes triggered in the post-flaring loops.



قيم البحث

اقرأ أيضاً

145 - D. Li , Z. J. Ning , 2015
We explore the Quasi-Periodic Pulsations (QPPs) in a solar flare observed by Fermi Gamma-ray Burst Monitor (GBM), Solar Dynamics Observatory (SDO), Solar Terrestrial Relations Observatory (STEREO), and Interface Region Imaging Spectrograph (IRIS) on 2014 September 10. QPPs are identified as the regular and periodic peaks on the rapidly-varying components, which are the light curves after removing the slowly-varying components. The QPPs display only three peaks at the beginning on the hard X-ray (HXR) emissions, but ten peaks on the chromospheric and coronal line emissions, and more than seven peaks (each peak is corresponding to a type III burst on the dynamic spectra) at the radio emissions. An uniform quasi-period about 4 minutes are detected among them. AIA imaging observations exhibit that the 4-min QPPs originate from the flare ribbon, and tend to appear on the ribbon front. IRIS spectral observations show that each peak of the QPPs tends to a broad line width and a red Doppler velocity at C I, O IV, Si IV, and Fe XXI lines. Our findings indicate that the QPPs are produced by the non-thermal electrons which are accelerated by the induced quasi-periodic magnetic reconnections in this flare.
We report observations of quasi-periodic pulsations (QPPs) during the X2.2 flare of 2011 February 15, observed simultaneously in several wavebands. We focus on fluctuations on time scale 1-30 s and find different time lags between different wavebands . During the impulsive phase, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) channels in the range 25-100 keV lead all the other channels. They are followed by the Nobeyama RadioPolarimeters at 9 and 17 GHz and the Extreme Ultra-Violet (EUV) channels of the Euv SpectroPhotometer (ESP) onboard the Solar Dynamic Observatory (SDO). The Zirconium and Aluminum filter channels of the Large Yield Radiometer (LYRA) onboard the Project for On-Board Autonomy (PROBA2) satellite and the SXR channel of ESP follow. The largest lags occur in observations from the Geostationary Operational Environmental Satellite (GOES), where the channel at 1-8 {AA} leads the 0.5-4 {AA} channel by several seconds. The time lags between the first and last channels is up to 9 s. We identified at least two distinct time intervals during the flare impulsive phase, during which the QPPs were associated with two different sources in the Nobeyama RadioHeliograph at 17 GHz. The radio as well as the hard X-ray channels showed different lags during these two intervals. To our knowledge, this is the first time that time lags are reported between EUV and SXR fluctuations on these time scales. We discuss possible emission mechanisms and interpretations, including flare electron trapping.
We describe microwave and hard X-ray observations of strong quasiperiodic pulsations from the GOES X1.3 solar flare on 15 June 2003. The radio observations were made jointly by the Owens Valley Solar Array (OVSA), the Nobeyama Polarimeter (NoRP), and the Nobeyama Radioheliograph (NoRH). Hard X-ray observations were made by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Using Fourier analysis, we study the frequency- and energy-dependent oscillation periods, differential phase, and modulation amplitudes of the radio and X-ray pulsations. Focusing on the more complete radio observations, we also examine the modulation of the degree of circular polarization and of the radio spectral index. The observed properties of the oscillations are compared with those derived from two simple models for the radio emission. In particular, we explicitly fit the observed modulation amplitude data to the two competing models. The first model considers the effects of MHD oscillations on the radio emission. The second model considers the quasi-periodic injection of fast electrons. We demonstrate that quasiperiodic acceleration and injection of fast electrons is the more likely cause of the quasiperiodic oscillations observed in the radio and hard X-ray emission, which has important implications for particle acceleration and transport in the flaring sources.
Quasi-periodic pulsations (QPP) are common in solar flares and are now regularly observed in stellar flares. We present the detection of two different types of QPP signals in the thermal emission light curves of the X9.3 class solar flare SOL2017-09- 06T12:02, which is the most powerful flare of Cycle 24. The period of the shorter-period QPP drifts from about 12 to 25 seconds during the flare. The observed properties of this QPP are consistent with a sausage oscillation of a plasma loop in the flaring active region. The period of the longer-period QPP is about 4 to 5 minutes. Its properties are compatible with standing slow magnetoacoustic oscillations, which are often detected in coronal loops. For both QPP signals, other mechanisms such as repetitive reconnection cannot be ruled out, however. The studied solar flare has an energy in the realm of observed stellar flares, and the fact that there is evidence of a short-period QPP signal typical of solar flares along with a long-period QPP signal more typical of stellar flares suggests that the different ranges of QPP periods typically observed in solar and stellar flares is likely due to observational constraints, and that similar physical processes may be occurring in solar and stellar flares.
We studied a solar flare with pronounced quasi-periodic pulsations detected in the microwave, X-ray, and radio bands. We used the methods of correlation, Fourier, and wavelet analyses to examine the temporal fine structures and relationships between the time profiles in each wave band. We found that the time profiles of the microwaves, hard X-rays and type III radio bursts vary quasi-periodically with the common period of 40-50 s. The average amplitude of the variations is high, above 30% of the background flux level and reaching 80% after the flare maximum. We did not find the periodicity in either the thermal X-ray flux component or source size dynamics. Our findings indicate that the detected periodicity is likely to be associated with periodic dynamics in the injection of non-thermal electrons, that can be produced by periodic modulation of magnetic reconnection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا