ﻻ يوجد ملخص باللغة العربية
Bidimensionality is the most common technique to design subexponential-time parameterized algorithms on special classes of graphs, particularly planar graphs. The core engine behind it is a combinatorial lemma of Robertson, Seymour and Thomas that states that every planar graph either has a $sqrt{k}times sqrt{k}$-grid as a minor, or its treewidth is $O(sqrt{k})$. However, bidimensionality theory cannot be extended directly to several well-known classes of geometric graphs. Nevertheless, a relaxation of this lemma has been proven useful for unit disk graphs. Inspired by this, we prove a new decomposition lemma for map graphs. Informally, our lemma states the following. For any map graph $G$, there exists a collection $(U_1,ldots,U_t)$ of cliques of $G$ with the following property: $G$ either contains a $sqrt{k}times sqrt{k}$-grid as a minor, or it admits a tree decomposition where every bag is the union of $O(sqrt{k})$ of the cliques in the above collection. The new lemma appears to be a handy tool in the design of subexponential parameterized algorithms on map graphs. We demonstrate its usability by designing algorithms on map graphs with running time $2^{O({sqrt{k}log{k}})} cdot n^{O(1)}$ for the Connected Planar $cal F$-Deletion problem (that encompasses problems such as Feedback Vertex Set and Vertex Cover). Obtaining subexponential algorithms for Longest Cycle/Path and Cycle Packing is more challenging. We have to construct tree decompositions with more powerful properties and to prove sublinear bounds on the number of ways an optimum solution could cross bags in these decompositions. For Longest Cycle/Path, these are the first subexponential-time parameterized algorithms on map graphs. For Feedback Vertex Set and Cycle Packing, we improve upon known $2^{O({k^{0.75}log{k}})} cdot n^{O(1)}$-time algorithms on map graphs.
For a clustered graph, i.e, a graph whose vertex set is recursively partitioned into clusters, the C-Planarity Testing problem asks whether it is possible to find a planar embedding of the graph and a representation of each cluster as a region homeom
Consider a unit interval $[0,1]$ in which $n$ points arrive one-by-one independently and uniformly at random. On arrival of a point, the problem is to immediately and irrevocably color it in ${+1,-1}$ while ensuring that every interval $[a,b] subsete
We study the problem of embedding graphs in the plane as good geometric spanners. That is, for a graph $G$, the goal is to construct a straight-line drawing $Gamma$ of $G$ in the plane such that, for any two vertices $u$ and $v$ of $G$, the ratio bet
We consider the problem of computing the diameter of a unicycle graph (i.e., a graph with a unique cycle). We present an O(n) time algorithm for the problem, where n is the number of vertices of the graph. This improves the previous best O(n log n) t
We study the Steiner tree problem on map graphs, which substantially generalize planar graphs as they allow arbitrarily large cliques. We obtain a PTAS for Steiner tree on map graphs, which builds on the result for planar edge weighted instances of B