ترغب بنشر مسار تعليمي؟ اضغط هنا

Liver Pathology Simulation: Algorithm for Haptic Rendering and Force Maps for Palpation Assessment

243   0   0.0 ( 0 )
 نشر من قبل Felix Hamza-Lup
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Preoperative gestures include tactile sampling of the mechanical properties of biological tissue for both histological and pathological considerations. Tactile properties used in conjunction with visual cues can provide useful feedback to the surgeon. Development of novel cost effective haptic-based simulators and their introduction in the minimally invasive surgery learning cycle can absorb the learning curve for your residents. Receiving pre-training in a core set of surgical skills can reduce skill acquisition time and risks. We present the integration of a real-time surface stiffness adjustment algorithm and a novel paradigm -- force maps -- in a visuo-haptic simulator module designed to train internal organs disease diagnostics through palpation.



قيم البحث

اقرأ أيضاً

Mechanical properties of biological tissue for both histological and pathological considerations are often required in disease diagnostics. Such properties can be simulated and explored with haptic technology. Development of cost effective haptic-bas ed simulators and their introduction in the minimally invasive surgery learning cycle is still in its infancy. Receiving pretraining in a core set of surgical skills can reduce skill acquisition time and risks. We present the development of a visuo-haptic simulator module designed to train internal organs disease diagnostics through palpation. The module is part of a set of tools designed to train and improve basic surgical skills for minimally invasive surgery.
110 - Chaoyang He , Ming Li 2019
The spatial anti-aliasing technique for line joins (intersections of the road segments) on vector maps is exclusively crucial to visual experience and system performance. Due to limitations of OpenGL API, one common practice to achieve the anti-alias ed effect is splicing multiple triangles at varying scale levels to approximate the fan-shaped line joins. However, this approximation inevitably produces some unreality, and the system rendering performance is not optimal. To circumvent these drawbacks, in this paper, we propose a simple but efficient algorithm which uses only two triangles to substitute the multiple triangles approximation and then renders a realistic fan-shaped curve with alpha operation based on geometrical relation computing. Our experiment shows it has advantages of a realistic anti-aliasing effect, less memory cost, higher frame rate, and drawing line joins without overlapping rendering. Our proposed spatial anti-aliasing technique has been widely used in Internet Maps such as Tencent Mobile Maps and Tencent Automotive Maps.
In this work, we present an integrated geometric framework: deep- cut that enables for the first time a user to geometrically and algorithmically cut, tear and drill the surface of a skinned model without prior constraints, layered on top of a custom soft body mesh deformation algorithm. Both layered algorithms in this frame- work yield real-time results and are amenable for mobile Virtual Reality, in order to be utilized in a variety of interactive application scenarios. Our framework dramatically improves real-time user experience and task performance in VR, without pre-calculated or artificially designed cuts, tears, drills or surface deformations via predefined rigged animations, which is the current state-of-the-art in mobile VR. Thus our framework improves user experience on one hand, on the other hand saves both time and costs from expensive, manual, labour-intensive design pre-calculation stages.
We propose MetroSets, a new, flexible online tool for visualizing set systems using the metro map metaphor. We model a given set system as a hypergraph $mathcal{H} = (V, mathcal{S})$, consisting of a set $V$ of vertices and a set $mathcal{S}$, which contains subsets of $V$ called hyperedges. Our system then computes a metro map representation of $mathcal{H}$, where each hyperedge $E$ in $mathcal{S}$ corresponds to a metro line and each vertex corresponds to a metro station. Vertices that appear in two or more hyperedges are drawn as interchanges in the metro map, connecting the different sets. MetroSets is based on a modular 4-step pipeline which constructs and optimizes a path-based hypergraph support, which is then drawn and schematized using metro map layout algorithms. We propose and implement multiple algorithms for each step of the MetroSet pipeline and provide a functional prototype with easy-to-use preset configurations. Furthermore, using several real-world datasets, we perform an extensive quantitative evaluation of the impact of different pipeline stages on desirable properties of the generated maps, such as octolinearity, monotonicity, and edge uniformity.
Realistic image synthesis involves computing high-dimensional light transport integrals which in practice are numerically estimated using Monte Carlo integration. The error of this estimation manifests itself in the image as visually displeasing alia sing or noise. To ameliorate this, we develop a theoretical framework for optimizing screen-space error distribution. Our model is flexible and works for arbitrary target error power spectra. We focus on perceptual error optimization by leveraging models of the human visual systems (HVS) point spread function (PSF) from halftoning literature. This results in a specific optimization problem whose solution distributes the error as visually pleasing blue noise in image space. We develop a set of algorithms that provide a trade-off between quality and speed, showing substantial improvements over prior state of the art. We perform evaluations using both quantitative and perceptual error metrics to support our analysis, and provide extensive supplemental material to help evaluate the perceptual improvements achieved by our methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا