ﻻ يوجد ملخص باللغة العربية
Lattice Boltzmann Method(LBM) has achieved considerable success on simulating complex flows. However, how to impose correct boundary conditions on the fluid-solid interface with complex geometries is still an open question. Here we proposed a velocity interpolation based bounce-back scheme where the ideas of interpolated bounce-back and non-equilibrium extrapolation are combined. The proposed scheme is validated by several well-defined benchmark cases. It is shown that the proposed scheme offers a better accuracy at high Reynolds number and less dependency on solids positions which may crucial in many engineering and science applications.
Lattice Boltzmann (LB) models used for the computation of fluid flows represented by the Navier-Stokes (NS) equations on standard lattices can lead to non-Galilean invariant (GI) viscous stress involving cubic velocity errors. This arises from the de
Simulating inhomogeneous flows with different characteristic scales in different coordinate directions using the collide-and-stream based lattice Boltzmann methods (LBM) can be accomplished efficiently using rectangular lattice grids. We develop and
We present a multi-scale lattice Boltzmann scheme, which adaptively refines particles velocity space. Different velocity sets, i.e., higher- and lower-order lattices, are consistently and efficiently coupled, allowing us to use the higher-order latti
On-site boundary conditions are often desired for lattice Boltzmann simulations of fluid flow in complex geometries such as porous media or microfluidic devices. The possibility to specify the exact position of the boundary, independent of other simu
A new lattice Boltzmann model for multicomponent ideal gas mixtures is presented. The model development consists of two parts. First, a new kinetic model for Stefan- Maxwell diffusion amongst the species is proposed and realized as a lattice Boltzman