ﻻ يوجد ملخص باللغة العربية
We use the Iocco et al. (2015) compilation of 2,780 circular velocity measurements to analyze the Milky Way rotation curve. We find that the error bars for individual measurements are non-gaussian, and hence instead derive median statistics binned central circular velocity values and error bars from these data. We use these median statistics central values and error bars to fit the data to simple, few parameter, rotation curve functions. These simple functions are unable to adequately capture the significant small scale spatial structure in these data and so provide poor fits. We introduce and use the Gaussian Processes (GP) method to capture this small scale structure and use it to derive Milky Way rotation curves from the binned median statistics circular velocity data. The GP method rotation curves have significant small-scale spatial structure superimposed on a broad rise to galactocentric radius $Rapprox7$ kpc and a decline at larger $R$. We use the GP method median statistics rotation curve to measure the Oort $A$ and $B$ constants and other characteristic rotation curve quantities. We study correlations in the residual circular velocities (relative to the GP method rotation curve). Along with other evidence for azimuthal asymmetry of the Milky Way circular rotation velocity field, we find that larger residual circular velocities seem to favor parts of spiral arms.
White dwarf stars are a well-established tool for studying Galactic stellar populations. Two white dwarfs in a tight binary system offer us an additional messenger - gravitational waves - for exploring the Milky Way and its immediate surroundings. Gr
This paper presents an alternative scenario to explain the observed properties of the Milky Way dwarf Spheroidals (MW dSphs). We show that instead of resulting from large amounts of dark matter (DM), the large velocity dispersions observed along thei
Based on Gaia Early Data Release 3 (EDR3), we estimate the proper motions for 46 dwarf spheroidal galaxies (dSphs) of the Milky Way. The uncertainties in proper motions, determined by combining both statistical and systematic errors, are smaller by a
The phenomenology of modified Newtonian dynamics (MOND) on galaxy scales may point to more fundamental theories of either modified gravity (MG) or modified inertia (MI). In this paper, we test the applicability of the global deep-MOND parameter $Q$ w
Studying our Galaxy, the Milky Way (MW), gives us a close-up view of the interplay between cosmology, dark matter, and galaxy formation. In the next decade our understanding of the MWs dynamics, stellar populations, and structure will undergo a revol