ﻻ يوجد ملخص باللغة العربية
Given two graphs $G$ and $H$, the {it rainbow number} $rb(G,H)$ for $H$ with respect to $G$ is defined as the minimum number $k$ such that any $k$-edge-coloring of $G$ contains a rainbow $H$, i.e., a copy of $H$, all of its edges have different colors. Denote by $M_t$ a matching of size $t$ and $mathcal {T}_n$ the class of all plane triangulations of order $n$, respectively. Jendrol, Schiermeyer and Tu initiated to investigate the rainbow numbers for matchings in plane triangulations, and proved some bounds for the value of $rb({mathcal {T}_n},M_t)$. Chen, Lan and Song proved that $2n+3t-14 le rb(mathcal {T}_n, M_t)le 2n+4t-13$ for all $nge 3t-6$ and $t ge 6$. In this paper, we determine the exact values of $rb({mathcal {T}_n},M_t)$ for large $n$, namely, $rb({mathcal {T}_n},M_t)=2n+3t-14$ for all $n ge 9t+3$ and $tge 7$.
Given two graphs $G$ and $H$, the {it rainbow number} $rb(G,H)$ for $H$ with respect to $G$ is defined as the minimum number $k$ such that any $k$-edge-coloring of $G$ contains a rainbow $H$, i.e., a copy of $H$, all of whose edges have different col
Drisko proved that $2n-1$ matchings of size $n$ in a bipartite graph have a rainbow matching of size $n$. For general graphs it is conjectured that $2n$ matchings suffice for this purpose (and that $2n-1$ matchings suffice when $n$ is even). The know
A graph $G$ whose edges are coloured (not necessarily properly) contains a full rainbow matching if there is a matching $M$ that contains exactly one edge of each colour. We refute several conjectures on matchings in hypergraphs and full rainbow matc
There has been much research on the topic of finding a large rainbow matching (with no two edges having the same color) in a properly edge-colored graph, where a proper edge coloring is a coloring of the edge set such that no same-colored edges are i
Let $k>1$, and let $mathcal{F}$ be a family of $2n+k-3$ non-empty sets of edges in a bipartite graph. If the union of every $k$ members of $mathcal{F}$ contains a matching of size $n$, then there exists an $mathcal{F}$-rainbow matching of size $n$. U