We propose a simple solvable variant of the Sachdev-Ye-Kitaev (SYK) model which displays a quantum phase transition from a fast-scrambling non-Fermi liquid to disordered Fermi liquid. Like the canonical SYK model, our variant involves a single species of Majorana fermions connected by all-to-all random four-fermion interactions. The phase transition is driven by a random two-fermion term added to the Hamiltonian whose structure is inspired by proposed solid-state realizations of the SYK model. Analytic expressions for the saddle point solutions at large number $N$ of fermions are obtained and show a characteristic scale-invariant $sim |omega|^{-1/2}$ behavior of the spectral function below the transition which is replaced by a $sim |omega|^{-1/3}$ singularity exactly at the critical point. These results are confirmed by numerical solutions of the saddle point equations and discussed in the broader context of the field.