ترغب بنشر مسار تعليمي؟ اضغط هنا

The VLT-FLAMES Tarantula Survey: XXXI. Radial velocities and multiplicity constraints of red supergiant stars in 30 Doradus

327   0   0.0 ( 0 )
 نشر من قبل Lee Patrick
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The incidence of multiplicity in cool, luminous massive stars is relatively unknown compared to their hotter counterparts. Here we present radial velocity (RV) measurements and investigate the multiplicity properties of red supergiants (RSGs) in the 30~Doradus region of the Large Magellanic Cloud. We provide absolute RV measurements for our sample and estimate line-of-sight velocities for the Hodge 301 and SL 639 clusters, which agree well with those of hot stars in the same clusters. By combining results for the RSGs with those for nearby B-type stars, we estimate systemic velocities and velocity dispersions for the two clusters, obtaining estimates for their dynamical masses of $log (M_{rm dyn}/M_{odot})=$3.8$pm$0.3 for Hodge 301, and an upper limit of $log (M_{rm dyn}/M_{odot})$<3.1$pm$0.8 for SL 639, assuming Virial equilibrium. Analysis of the multi-epoch data reveals one RV-variable, potential binary candidate (VFTS744), which is likely a semi-regular variable asymptotic giant branch star. We estimate an upper limit on the observed binary fraction for our sample of 0.3, where we are sensitive to maximum periods for individual objects in the range of 1 to 10 000 days and mass-ratios above 0.3 depending on the data quality. From simulations of the RV measurements from binary systems given the current data we conclude that systems within the parameter range q>0.3, $log$P[days]<3.5, would be detected by our variability criteria, at the 90% confidence level. The intrinsic binary fraction, accounting for observational biases, is estimated using simulations of binary systems with an empirically defined distribution of parameters where orbital periods are uniformly distributed in the 3.3<$log$P[days]<4.3 range. A range of intrinsic binary fractions are considered; a binary fraction of 0.3 is found to best reproduce the observed data. [Abridged]



قيم البحث

اقرأ أيضاً

We present spectral classifications for 438 B-type stars observed as part of the VLT-FLAMES Tarantula Survey (VFTS) in the 30 Doradus region of the Large Magellanic Cloud. Radial velocities are provided for 307 apparently single stars, and for 99 tar gets with radial-velocity variations which are consistent with them being spectroscopic binaries. We investigate the spatial distribution of the radial velocities across the 30 Dor region, and use the results to identify candidate runaway stars. Excluding potential runaways and members of two older clusters in the survey region (SL 639 and Hodge 301), we determine a systemic velocity for 30 Dor of 271.6 +/- 12.2 km/s from 273 presumed single stars. Employing a 3-sigma criterion we identify nine candidate runaway stars (2.9% of the single stars with radial-velocity estimates). The projected rotational velocities of the candidate runaways appear to be significantly different to those of the full B-type sample, with a strong preference for either large (>345 km/s) or small (<65 km/s) rotational velocities. Of the candidate runaways, VFTS 358 (classified B0.5: V) has the largest differential radial velocity (-106.9 +/- 16.2 km/s), and a preliminary atmospheric analysis finds a significantly enriched nitrogen abundance of 12+log(N/H) > ~8.5. Combined with a large rotational velocity (vsini = 345 +/- 22 km/s), this is suggestive of past binary interaction for this star.
115 - N. R. Walborn 2014
Detailed spectral classifications are presented for 352 O-B0 stars in the VLT-FLAMES Tarantula Survey, of which 213 O-type are of sufficient quality for further morphological analysis. Among them, six subcategories of special interest are distinguish ed. (1) Several new examples of the earliest spectral types O2-O3 have been found. (2) A group of extremely rapidly rotating main-sequence objects has been isolated, including the largest $vsin i$ values known, the spatial and radial-velocity distributions of which suggest ejection from the two principal ionizing clusters. (3) Several new examples of the evolved, rapidly rotating Onfp class show similar evidence. (4) No fewer than 48 members of the Vz category, hypothesized to be on or near the ZAMS, are found in this sample; in contrast to the rapid rotators, they are strongly concentrated to the ionizing clusters, supporting their interpretation as very young objects, as do their relatively faint absolute magnitudes. (5) A surprisingly large fraction of the main-sequence spectra belong to the recently recognized V((fc)) class, with C III emission lines of similar strength to the usual N III in V((f)) spectra; there are also six objects with very high-quality data but no trace of either mission feature, presenting new challenges to physical interpretations. (6) Five spectra with morphologically enhanced nitrogen lines have been detected. Absolute visual magnitudes have been derived for each star with individual extinction laws, and composite HRDs provide evidence of the multiple generations present in this field. Associations with X-ray sources are noted. Further analyses of this unique dataset underway will provide new insights into the evolution of massive stars and starburst clusters.
We investigate the characteristics of two newly discovered short-period, double-lined, massive binary systems, VFTS 450 (O9.7$;$II--Ib$,$+$,$O7::) and VFTS 652 (B1$;$Ib$,+,$O9:$;$III:). We perform model-atmosphere analyses to characterise the photosp heric properties of both members of each binary (denoting the `primary as the spectroscopically more conspicuous component). Radial velocities and optical photometry are used to estimate the binary-system parameters. We estimate $T_{rm eff}=27$ kK, $log{(g)}=2.9$ (cgs) for the VFTS 450 primary spectrum (34kK, 3.6: for the secondary spectrum); and $T_{rm eff} = 22$kK, $log{(g)}=2.8$ for the VFTS 652 primary spectrum (35kK, 3.7: for the secondary spectrum). Both primaries show surface nitrogen enrichments (of more than 1 dex for VFTS 652), and probable moderate oxygen depletions relative to reference LMC abundances. We determine orbital periods of 6.89d and 8.59d for VFTS 450 and VFTS 652, respectively, and argue that the primaries must be close to filling their Roche lobes. Supposing this to be the case, we estimate component masses in the range $sim$20--50M$_odot$. The secondary spectra are associated with the more massive components, suggesting that both systems are high-mass analogues of classical Algol systems, undergoing case-A mass transfer. Difficulties in reconciling the spectroscopic analyses with the light-curves and with evolutionary considerations suggest that the secondary spectra are contaminated by (or arise in) accretion disks.
The 30 Doradus (30 Dor) nebula in the Large Magellanic Cloud (LMC) is the brightest HII region in the Local Group and a prototype starburst similar to those found in high redshift galaxies. It is thus a stepping stone to understand the complex format ion processes of stars in starburst regions across the Universe. Here, we have studied the formation history of massive stars in 30 Dor using masses and ages derived for 452 mainly OB stars from the spectroscopic VLT-FLAMES Tarantula Survey (VFTS). We find that stars of all ages and masses are scattered throughout 30 Dor. This is remarkable because it implies that massive stars either moved large distances or formed independently over the whole field of view in relative isolation. We find that both channels contribute to the 30 Dor massive star population. Massive star formation rapidly accelerated about 8 Myr ago, first forming stars in the field before giving birth to the stellar populations in NGC 2060 and NGC 2070. The R136 star cluster in NGC 2070 formed last and, since then, about 1 Myr ago, star formation seems to be diminished with some continuing in the surroundings of R136. Massive stars within a projected distance of 8 pc of R136 are not coeval but show an age range of up to 6 Myr. Our mass distributions are well populated up to $200,mathrm{M}_odot$. The inferred IMF is shallower than a Salpeter-like IMF and appears to be the same across 30 Dor. By comparing our sample of stars to stellar models in the Hertzsprung-Russell diagram, we find evidence for missing physics in the models above $log L/mathrm{L}_odot=6$ that is likely connected to enhanced wind mass loss for stars approaching the Eddington limit. [abridged]
We investigate the multiplicity properties of 408 B-type stars observed in the 30 Doradus region of the Large Magellanic Cloud with multi-epoch spectroscopy from the VLT-FLAMES Tarantula Survey (VFTS). We use a cross-correlation method to estimate re lative radial velocities from the helium and metal absorption lines for each of our targets. Objects with significant radial-velocity variations (and with an amplitude larger than 16 km/s) are classified as spectroscopic binaries. We find an observed spectroscopic binary fraction (defined by periods of <10^3.5 d and mass ratios >0.1) for the B-type stars, f_B(obs) = 0.25 +/- 0.02, which appears constant across the field of view, except for the two older clusters (Hodge 301 and SL 639). These two clusters have significantly lower fractions of 0.08 +/- 0.08 and 0.10 +/- 0.09, respectively. Using synthetic populations and a model of our observed epochs and their potential biases, we constrain the intrinsic multiplicity properties of the dwarf and giant (i.e. relatively unevolved) B-type stars in 30 Dor. We obtain a present-day binary fraction f_B(true) = 0.58 +/- 0.11, with a flat period distribution. Within the uncertainties, the multiplicity properties of the B-type stars agree with those for the O stars in 30 Dor from the VFTS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا