ﻻ يوجد ملخص باللغة العربية
A classic reachability problem for safety of dynamic systems is to compute the set of initial states from which the state trajectory is guaranteed to stay inside a given constraint set over a given time horizon. In this paper, we leverage existing theory of reachability analysis and risk measures to devise a risk-sensitive reachability approach for safety of stochastic dynamic systems under non-adversarial disturbances over a finite time horizon. Specifically, we first introduce the notion of a risk-sensitive safe set as a set of initial states from which the risk of large constraint violations can be reduced to a required level via a control policy, where risk is quantified using the Conditional Value-at-Risk (CVaR) measure. Second, we show how the computation of a risk-sensitive safe set can be reduced to the solution to a Markov Decision Process (MDP), where cost is assessed according to CVaR. Third, leveraging this reduction, we devise a tractable algorithm to approximate a risk-sensitive safe set, and provide theoretical arguments about its correctness. Finally, we present a realistic example inspired from stormwater catchment design to demonstrate the utility of risk-sensitive reachability analysis. In particular, our approach allows a practitioner to tune the level of risk sensitivity from worst-case (which is typical for Hamilton-Jacobi reachability analysis) to risk-neutral (which is the case for stochastic reachability analysis).
This paper proposes a safety analysis method that facilitates a tunable balance between the worst-case and risk-neutral perspectives. First, we define a risk-sensitive safe set to specify the degree of safety attained by a stochastic system. This set
Autonomous cyber-physical systems (CPS) rely on the correct operation of numerous components, with state-of-the-art methods relying on machine learning (ML) and artificial intelligence (AI) components in various stages of sensing and control. This pa
Trajectory optimization considers the problem of deciding how to control a dynamical system to move along a trajectory which minimizes some cost function. Differential Dynamic Programming (DDP) is an optimal control method which utilizes a second-ord
This paper develops a safety analysis method for stochastic systems that is sensitive to the possibility and severity of rare harmful outcomes. We define risk-sensitive safe sets as sub-level sets of the solution to a non-standard optimal control pro
We study turn-based stochastic zero-sum games with lexicographic preferences over reachability and safety objectives. Stochastic games are standard models in control, verification, and synthesis of stochastic reactive systems that exhibit both random